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Identifying Gene Networks
Underlying the Neurobiology
of Ethanol and Alcoholism

Aaron R. Wolen, Ph.D., and Michael F. Miles, M.D., Ph.D.

For complex disorders such as alcoholism, identfifying the genes linked to these diseases
and their specific roles is difficult. Traditional genetic approaches, such as genetic
association studies (including genome-wide association studies) and analyses of
quantitative frait loci (QTLS) in both humans and laboratory animals already have helped
identify some candidate genes. However, because of technical obstacles, such as the
small impact of any individual gene, these approaches only have limited effectiveness in
identifying specific genes that contribute to complex diseases. The emerging field of
systems biology, which allows for analyses of entire gene networks, may help
researchers better elucidate the genetic basis of alcoholism, both in humans and in
animal models. Such networks can be identified using approaches such as high-
throughput molecular profiling (e.g., through microarray-based gene expression
analyses) or strategies referred to as genetical genomics, such as the mapping of
expression QTLs (eQTLs). Characterization of gene networks can shed light on the
biological pathways underlying complex traits and provide the functional context for
identifying those genes that contribute to disease development. Key worps: Alcoholism;
alcohol use disorders (AUDs); genetics; genetic basis of alcoholism; genetic
technology; genetic association studies; quantitative trait loci (QTLS); genetic mapping;
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and behavioral factors that play a

role in the development of alcohol
use disorders (AUDs) make it difficule
to identify individual genes linked to
these disorders. Nevertheless, some
genetic risk factors (i.e., specific variants)
associated with AUDs have been iden-
tified within many genes, some of which
code for proteins involved in known
biological pathways. Despite this progtess,
it has been exceedingly difficult to
determine which genes may be the
most relevant to developing therapeutic
interventions for alcoholism. The major
obstacles in treatment development are
that gene—disease associations reveal
very little about the underlying biology
and that any implicated gene variant
explains only a tiny proportion of an
individual’s overall risk for an AUD.
Recent work focusing on the study of
alcohol-related gene networks is helping

The multiple genetic, environmental,
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gene networks; genomes; genetical genomics; human studies; animal models

to shed light on the molecular factors
affecting alcoholism and other complex
diseases. This article will provide an
overview of approaches used to identify
or construct gene networks and describe
how systems biology approaches are help-
ing to better understand complex traits
such as behavioral responses to beverage

alcohol (i.e., ethanol) and alcoholism.

Traditional Approaches to
Dissecting Complex Traits

The predominant experimental strategy
used by contemporary geneticists to
identify the genetic factors involved

in complex traits, such as behavioral
responses to alcohol, essentially is an
expansion of the gene mapping approach
proposed by Botstein and colleagues
(1980) over 30 years ago. For this
approach, investigators scan their samples

for genetic variations (i.e., polymor-
phisms) that segregate with the trait—
that is, which are found in samples
with the trait more often than would
be expected by chance and therefore
might contribute to the development
of that trait. In recent human studies,
this approach typically has been applied
in genome-wide association studies
(GWASs) of large, population-based
samples that comprise both case subjects
(i.e., individuals expressing the trait, or
phenotype, under investigation) and
unaffected control subjects. Hundreds
of complex diseases and traits, including
susceptibility to AUDs, have been
analyzed using GWASs, resulting in
the identification of several important
links between genetic variants and these
diseases (Bierut et al. 2010). Overall,
however, the success of this approach
has been mixed, and greater progress
has been hindered by insufficient



sample sizes, stratified populations, the
involvement of rare gene variants (i.e.,
alleles) that each only have a small effect
size, and heterogenous phenotypic con-
structs (i.e., using different criteria to
distinguish cases from controls).!

A similar forward-genetics approach
that most often is used for studying
animal models of complex traits is
called quantitative trait locus (QTL)
mapping. A quantitative trait is a phe-
notype that is determined by several
genes, each of which has a variable
contribution to the trait. The locations
of the involved genes on the chromo-
somes are referred to as QTLs. QTL
mapping studies typically are conducted
using inbred strains of mice and their
various derivatives. For example, the
C57BL/6J (B6) and DBA2/J (D2)
inbred mice frequently are used in
alcohol research because they clearly
differ in various responses to alcohol,
including development of functional
tolerance (Grieve and Littleton 1979),
locomotor activation (Phillips et al.
1998), and sensitivity to withdrawal
symptoms (Metten and Crabbe 1994).
Because the environmental conditions
in these experiments can be controlled,
any differences observed between the
mouse strains in these phenotypes most
likely can be attributed to genetic dif-
ferences. QTL mapping studies then
seek to detect the polymorphisms under-
lying the complex traits of interest by
scanning for alleles that co-vary with
the traits.

Similar experiments also can be con-
ducted with special derivatives of inbred
strains known as recombinant inbred
(RI) mice. These animals are derived
by cross-breeding two or more distinct
parental strains (which often diverge
widely for the trait of interest), followed
by inbreeding of the offspring for several
generations (Bailey 1971). Given the
correct breeding strategy, this method

T This is an issue faced by GWASs researchers when classifying
samples as cases or controls. If cases are limited to only individ-
uals who have been diagnosed with an AUD, it becomes difficult
fo enlist a sufficient number of participants. Moreover, many of
the control subjects could very well be undiagnosed alcoholics
or people who meet some but not all of the diagnostic criteria
for an AUD. As a result, the control group could be polluted with
near-cases, diluting any detectable group differences.

results in a panel of RI mouse strains
that differ in the degree to which they
exhibit a certain phenotype of interest.
At the same time, each of the strains
effectively is isogenic, meaning that for
all genes, the genome carries two iden-
tical alleles (i.e., is homozygous). As a
result, when two animals from the same
RI mouse strain are bred, their off-
spring will have the exact same genetic
makeup (i.e., genotype) as the parents.
This makes it possible to directly inte-
grate results generated from disparate
experiments, in different laboratories,
and at different times if they all use ani-
mals from the same RI mouse strain.
This feature of RI mouse panels, and
inbred animals in general, is particularly
valuable for QTL mapping because the
expense and time involved with geno-
typing or sequencing a strain only is
incurred once.

The molecular and genetic resources
outlined above have greatly increased
the power and resolution of QTL
mapping for various behaviors or other
traits of interest. Yet despite these
advances, the DNA regions identified
as QTLs typically still are relatively large
and may contain several genes; accord-
ingly, few genes have been validated as
contributing to quantitative traits (i.e.,
being quantitative trait genes [QTGs]).
This difficulty is attributable largely
to the lack of sufficient recombination
events in existing mouse panels to
reduce the size of DNA segments that
typically are inherited together (i.e.,
haplotype block size) for fine mapping
and to the generally small effect size for
any single QTG.

Genomic Approaches
to Disease Dissection

Because of the technical obstacles
impeding their more effective use, both
GWASs and QTL mapping studies to
date have identified a deluge of disease-
associated genetic loci but only few
actual causal genes. Moreover, even the
most successful studies have failed to
place the disease-associated genes in any
kind of biological context that would

serve to explain the underlying func-
tional biology. Without elucidating the
complex interactions of the molecular
phenotypes that stand between genetic
variation and disease, it will be difficult
or impossible to develop new and effec-
tive approaches to treating such diseases.

The emerging field of systems biology
is tackling this immense challenge by
studying networks of genes, proteins,
metabolites, and other biomarkers that
represent models of genuine biological
pathways. Studying complex diseases
in terms of gene networks rather than
individual genes or genomic loci should
aid in uncovering disease genes. With
this approach, the effects of multiple
genes in the network are combined,
producing a stronger signal and reducing
the number of statistical tests of associ-
ation that must be performed.

These benefits effectively were
demonstrated in two recent human
association studies that modified the
typical GWAS:s strategy by seeking
associations only within groups of
functionally related genes, rather than
across the entire genome. The first of
these studies (Ruano et al. 2010) dis-
covered that cognitive ability, a complex
phenotype with a large genetic compo-
nent, was significantly linked to genes
encoding molecules called G-proteins
that consist of three different subunits
(i.e., heterotrimeric G-proteins). The
second study (Reimers et al. 2011)
found that genes related to signaling
pathways involving the neurotransmitters
glutamate and y-aminobutyric acid
(GABA) signaling collectively con-
tribute to alcohol dependence.

Network-based approaches to the
dissection of complex diseases also can
be applied to animal models, yielding
experimental results that are more gen-
eralizable to humans because the path-
ways represented by these networks
are more evolutionarily conserved than
individual genes. This should encourage
greater collaboration between researchers
studying a common disease in different
species. In fact, the biology underlying
gene networks is so complex that any
hope of deriving novel therapeutics may
be entirely contingent on the extent to

Gene Networks Underlying Neurobiology ‘ 307



which scientists with diverse areas of
expertise are willing to share and inte-
grate datasets and make the process of
interpretation a collaborative one.

Using High-Throughput Molecular
Profiling to Define Disease

As the human and mouse genomes were
being assembled using the cutting-edge,
high-throughput DNA sequencers

that made these endeavors possible,
new technologies began to emerge
that, for the first time, allowed near-
comprehensive profiling of other cellular
components. The term profiling refers
to the measurement of different types
of biological molecules, such as DNA
to identify polymorphisms, messenger
RNA (mRNA) to determine transcript
abundance, proteins to identify certain
chemical modifications that occur after
the initial protein synthesis, and metabo-
lites to evaluate biochemical processes in
the cells. Platforms for high-throughput
approaches for all these types of molec-
ular profiling have become increasingly
commonplace. Concurrently, methods
for analyzing data produced by these
technologies constantly are evolving,
yielding results that are simultaneously
more sensitive and more specific. As a
result, researchers are better able to
appreciate systems-level changes associ-
ated with disease.

Of these various high-throughput
profiling techniques, microarray-based
gene expression platforms have featured
most prominently in biomedical research
to date. Through an unbiased profiling
of the transcriptome—that is, a mea-
surement of all mRNA molecules pro-
duced within a cell or tissue sample—
microarray expression studies allow
researchers to identify patterns of gene
expression associated with a disease. In
some cases, such patterns can better
define a complex phenotype by identi-
fying disease subtypes. For example,
microarray analysis of breast cancer
tumors identified gene expression sig-
natures that predict patient prognosis
and therefore help physicians tailor
treatment regimens (van't Veer et al.
2002). From a basic research perspec-

tive, microarray expression profiles can
help tease apart the complex interactions
that underlie the development of a dis-
ease by implicating a subset of genes
whose regulation is altered with the
disease. With this information, it may
become feasible to reconstruct the under-
lying biological pathways and enhance
understanding of disease etiology.
Genomic approaches have been
applied to alcoholism directly by
studying postmortem human brain
tissue isolated from alcoholics and
matched control subjects using gene
expression microarrays. This has revealed
novel information about changes in
the brain’s transcriptome that are asso-
ciated with chronic ethanol consumption.
One of the findings was a significant
deregulation of genes encoding proteins
that synthesize and maintain myelin,
the substance that forms a sheath sur-
rounding the long extensions (i.., axons)
of nerve cells and that is essential for
effective nerve signal transmission
(Lewohl et al. 2000; Mayfield et al.
2002). However, the nature of these
studies makes it impossible to determine
whether such gene expression devia-
tions actually are risk factors that con-
tribute to AUDs or simply represent
molecular consequences of excessive
alcohol consumption that are unrelated
to the behaviors constituting alcoholism.
Animal models can assist greatly in
this analysis by allowing for experi-
ments that are far more detailed and
informative but too invasive to ever
be performed with humans. Although
animal models could never replicate
a phenotype as complex as alcoholism,
they can mimic certain facets of the
trait, which then can be associated with
specific expression signatures using
gene expression microarrays. For example,
a genetic predisposition for alcoholism
may entail a stronger-than-average
preference for alcoholic beverages. This
particular facet of alcoholism is captured
by rodent models that selectively were
bred to maximize a penchant for or
aversion to ethanol, such as the aptly
named high-alcohol preference (HAP)
and low-alcohol preference (LAP) mice
(Grahame et al. 1999). In order to
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identify genes that may alter the per-
ceived desirability of ethanol, gene
expression microarrays were used to
compare the brain transcriptomes of
HAP and LAP mice, as well as of sev-
eral other inbred mouse strains that
drastically differ in ethanol preference
(Mulligan et al. 2006). This important
study identified a diverse array of
molecular pathways associated with
differences in ethanol preference. Some
of the genes that had the largest effect
sizes were related to neuronal function
and to the maintenance of the cells’
normal internal conditions (i.e., cellu-
lar homeostasis).

Another important facet of a genetic
predisposition to alcoholism is a com-
paratively blunted sensitivity to the
effects of ethanol. Studies have shown
that people who initially are less sensi-
tive to acute ethanol exposure are more
likely to have a family history of alco-
holism and are at greater risk for devel-
oping an AUD (Schuckit 1984, 1994).
As mentioned earlier, the B6 and D2
inbred mice frequently are used in
genetic studies of ethanol sensitivity.
For this reason, Kerns and colleagues
(2005) used microarray expression
studies to dissect the effect of acute
ethanol exposure on the brain’s tran-
scriptome using the B6 and D2 inbred
mouse strains. The investigators analyzed
three brain regions involved in a brain
system called the mesocorticolimbic
reward pathway, which is involved in
mediating the rewarding properties
of alcohol and other drugs. For each
region analyzed, the study identified a
specific set of genes (i.e., a gene module)
whose expression was altered in response
to acute ethanol exposure. These gene
modules contained greater-than-
expected numbers of genes involved in
several signaling pathways (i.e., retinoic
acid signaling, neuropeptide expression,
and glucocorticoid signaling). Moreover,
similar to the microarray studies of
postmortem human alcoholic brains
(Lewohl et al. 2000; Mayfield et al.
2002), several genes involved in myeli-
nation robustly were altered by alcohol
exposure, particularly in the prefrontal
cortex (Kerns et al. 2005).



In examining the responses to acute
or chronic alcohol exposure in rodent
brains, these and numerous other
genomic studies have enhanced the
understanding of the “ethanol tran-
scriptome” and provided a more com-
prehensive picture of the genes and
molecular pathways that contribute
to specific facets of AUDs than what
is possible with studies of postmortem
human brains (Daniels and Buck
2002; Mulligan et al. 2011; Rimondini
et al. 2002; Saito et al. 2004; Treadwell
and Singh 2004). Moreover, these
studies effectively have demonstrated
how gene expression microarrays can
help close the information gap that
exists between DNA variation and
complex diseases. However, prioritizing
the long lists of genes produced by
comparative microarray studies con-
ducted in either species has proven
exceedingly difficult. As the costs asso-
ciated with validating a given gene’s
role in driving a complex trait are con-
siderable, an effective strategy for pri-
oritizing candidate genes is crucial.
Investigators therefore have used more
systems-level approaches that combine
genetic, genomic, and pharmacological
methods to better delineate gene net-
works causally related to ethanol
behaviors. Networks allow us to infer
relationships between genes and deter-
mine which are most important.

The Gene Network As a
Modern Genetic Map

The previous section mentioned sev-
eral studies that used gene-expression
microarrays to define lists of genes
responding to ethanol or otherwise
relevant to AUDs. Although these studies
have provided important biological
insights, the question of how such lists
can be used to further advance under-
standing of a complex disease is not
easily answered. Network-based
approaches can greatly improve

the interpretability of differential
gene-expression results by providing
information about the relationships
between genes.

Networks are systems of intercon-
nected components. For example, the
World Wide Web is a global network
of computers sharing documents con-
nected by hyperlinks; road maps are
renderings of city networks connected
by highways; social networks are groups
of people connected through friend-
ships; cellular signaling pathways are
groups of proteins connected through
molecular interactions; et cetera.
Placing such complex systems within
a network framework makes it possible
to formally analyze the relationships
that constitute these systems. Gene
networks typically are visualized as
mathematical graphs—that is, a collec-
tion of vertices and edges, where genes
are represented by nodes and the lines
connecting the nodes indicate that some
relationship exists between the genes.

Many published network analyses
of gene groups use information about
pre-existing biological relationships,
which may be derived from sources
such as literature co-citation analysis
(i.e., genes mentioned together in a
scientific abstract), protein—protein
interaction databases, or gene ontology
groupings. Some commercial tools
are available for such studies, such as
Ingenuity Pathway Analysis (Ingenuity
Systems, Redwood City, CA). However,
although these sources provide categories
for interpreting the genomic data, they
also force such interpretation into the
mold of pre-existing information,
thereby partially defeating the goal of
genomic studies.

Genomic data collected with high-
throughput molecular profiling pre-
sents the opportunity to derive novel
gene—gene interactions. The maturity
of gene expression microarrays relative
to similar technologies designed to
measure other molecular phenotypes
on a genomic scale has meant that
gene networks primarily are rendered
as gene coexpression networks. In the
context of gene coexpression networks,
links between nodes typically indicate
that the expression levels for two genes
are strongly correlated with one another
across whatever conditions an experi-
ment entails (e.g., across tissues, time

points, treatments, or individuals).
Each link in a gene network essentially
represents a testable hypothesis that
can be validated through follow-up
molecular experiments. Indeed, coex-
pression networks have been used to
identify protein interactions that are
novel (Scott et al. 2005) and conserved
across species (Stuart et al. 2003).

Various novel and innovative methods
exist for generating gene coexpression
networks. Although a comprehensive
review of these methods is beyond the
scope of this article, a few select methods
are described in more detail in the side-
bar. In their simplest form, however,
gene coexpression networks can be
constructed by calculating Pearson cor-
relations between all gene pairs and
applying a cutoff threshold to determine
which genes should be connected. The
simplicity of this approach makes it an
appealing choice for conducting a first
round of analyses.

Wolen and colleagues (in press) have
attempted to better define the meso-
corticolimbic reward pathway’s tran-
scriptional response to acute ethanol
exposure by expanding the original
B6/D2 study (Kerns et al. 2005) to
include members of the BXD family
of recombinant inbred mouse strains.
The naturally occurring DNA poly-
morphisms that distinguish each BXD
strain cause heritable changes in gene
expression, making it possible to iden-
tify genetically coregulated transcripts
across the BXD family. Microarray
expression data from the prefrontal
cortex of BXD family animals were
used to look for evidence of coregula-
tion among the 307 ethanol-responsive
genes identified in the original B6/D2
study (see figure 1). The analysis iden-
tified several groups of intercorrelated
gene modules, indicating this gene set
is comprised of several gene networks
(figure 1).

A variety of calculations can be used
to gauge the relative importance of a
particular gene to the network as a
whole (Horvath and Dong 2008). The
simplest measurement of node impor-
tance is determined by the degree of
“connectivity’—that is, the number of
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comprising genes known as Mbp, Mobp,
Mal, and Plp1 is of particular interest,
because these genes all play a role in the
formation and stabilization of myelin.
In addition, a parallel analysis was con-
ducted using microarray data only from
the prefrontal cortex of the same BXD
strains after they had received an injection
of 1.8 g/kg ethanol into their abdomi-
nal cavity. This analysis revealed that
the myelin gene network persisted but
underwent minor topographical mod-
ifications. Most notably, additional
connections were detected between
PlpI and two additional genes called
Mog and Lparl. The absence of Mog in
the original network probably was an
artifact of the method used to form
these networks, and the gene likely

should have been included. PlpI and
Lparl, in contrast, were effectively
unrelated at baseline and only showed
evidence of coregulation after ethanol
treatment, suggesting thisis a genuine
molecular response to ethanol (see
figure 2B).

The Lparl gene encodes a receptor
for lysophosphatidic acid (LPA), a sig-
naling molecule containing phosphate
and lipid components (i.c., a phospho-
lipid). Regulation of LparI is critical
for proper nerve-cell formation (i.e.,
neurogenesis), including in a brain region
called the hippocampus in adults
(Matas-Rico et al. 2008). In addition,
Lparl regulates the breakdown of the
myelin sheath (i.e., demyelination)
that occurs after nerve injury (Inoue

other genes the node is connected to in
the network. However, a gene’s “position”
in the network also is an important
consideration. For example, a gene that
served as the sole connection between
two otherwise independent gene networks
would rank fairly low on a priority scale
based on connectivity alone, despite
being an important channel of inter-
module communication. A measurement
of “betweenness centrality” (Girvan
and Newman, 2002) can highlight
such a gene by determining the fre-
quency with which a node is included
in the shortest paths between all possi-
ble node combinations.

Figure 2 highlights six subnetworks
taken from the larger coexpression net-
work depicted in figure 1. The network

Constructing Gene Networks

gene networks. As mentioned in

the main text, the simplest method
for constructing gene coexpression
networks involves calculating Pearson
correlations for all pair-wise genes and
applying a hard threshold to determine
which genes should be connected.
The robustness of these networks,
initially referred to as “relevance net-
works,” can be assessed through an
approach called permutation testing
(Butte et al. 2000). A more rigorous
method for constructing gene coex-
pression networks utilizes a graph the-
oretical approach to identify densely
intercorrelated gene modules called
paracliques (Baldwin et al. 2005).
Paracliques represent gene—gene inter-
action networks with extensive, but
not perfect, strong expression correla-
tions between all genes in the network
(http://grappa.cecs.utk.edu/grappa/
root). Paracliques can contain mem-
bers with missing links. Therefore,
paracliques provide an attractive com-
promise by augmenting coexpression

Various methods exist for generating

with genes whose correlational rela-
tionships to a network are strong, but
permissibly imperfect with a propor-
tion of the network. This proportion,
called the proportional glom factor, is
a user-defined parameter.

A potential limitation of both rele-
vance networks and paracliques is that
they rely on hard thresholds to classify
the relationship between genes as either
connected or unconnected. The
dichotomy imposed by this approach
may be artificially limiting these net-
works, causing biologically meaningful
relationships to be overlooked (Carter
et al. 2004). For example, the absence
of the Mog gene from the myelin net-
work described in the main article
and depicted in figure 2A following
ethanol treatment is symptomatic of
this limitation. An approach called
weighted gene coexpression network
analysis (WGCNA) is an increasingly
popular method that avoids these
potential pitfalls by utilizing a “soft-
thresholding” approach to generate
networks that conform to a scale-free
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topology (Zhang and Horvath 2005).
Scale-free networks follow the power
distribution they are named for, com-
prising many nodes that have sparse
connections and a few that are highly
interconnected. In addition to providing
an accurate model for metabolic net-
works (Jeong et al. 2000), neural net-
works of the roundworm Caenorbabditis
elegans (Watts and Strogatz 1998),
and the World Wide Web (Albert and
Jeong 1999), the scale-free topology
also typifies gene coexpression networks
(van Noort et al. 2004). Some researchers
recently have used WGCNA to define
correlated gene modules associated
with blood alcohol levels using the
“drinking-in-the-dark” paradigm of
excessive ethanol consumption in B6
mice (Mulligan et al. 2011). WGCNA
also can be implemented as a freely
available package (Langfelder and
Horvath 2008) for the R Statistical
Environment and provides an excellent
set of tutorials (available at genetics.ucla.
edu/labs/horvath/CoexpressionNetwork/
Rpackages/ WGCNA).



Lpar] regulates the breakdown of the
myelin sheath (i.e., demyelination)
that occurs after nerve injury (Inoue
etal. 2004). The fact that Lparl is
brought into this network by ethanol
exposure suggests the intriguing possi-
bility that this gene may play a role in
the loss of white matter? commonly
observed in long-term alcoholic patients
(Kril and Halliday 1999). This example
illustrates how studying ethanol-induced
changes in gene-network topology can
produce testable hypotheses relevant

to the neurobiology of alcoholism.
Obviously, alterations in the gene net-
work occurring after acute ethanol
exposure might not always be relevant
to alterations in brain structure and
function (i.e., neural plasticity) or toxic
effects that occur with chronic exposure,
such as in alcoholism. Therefore, find-
ings regarding networks relevant to one

ethanol behavioral phenotype should

be considered “specific” to that pheno-
type unless other genetic, pharmaco-
logical, or behavioral data suggests
links to other aspects of ethanol’s
actions in animal models or humans.
More generally, this example demon-
strates how systems-level methods, like
gene coexpression analysis, can help
greatly expand the information content
of gene expression microarray studies
by filling in information about the
gene—gene relationships.

Bridging the Gap Between
Genomics and Gene Mapping

Genetical Genomics

Another important early advancement
toward a more systems-level approach
to identifying disease-associated genes

Figure 1 Correlation heatmap depicting patterns of co-expression among genes previously
idenfified as being regulated by acute ethanol (Kerns et al. 2005). Each colored
square represents the Pearson correlation (r) between a pair of genes, calculated
using microarray expression data of prefrontal corfex tissue collected from B6, D2,
and 27 BXD mouse strains. The blue and red colors indicate the strength and direc-
tion of the gene-gene correlation. Hierarchical clustering was applied fo group genes
based on the similarity of their expression profile across this dataset. In doing so,
modules of co-expressed genes are revealed as cohesive blocks along the diagonal.

was the application of gene mapping
methods to high-throughput molecular
data in order to identify causal links
between molecular phenotypes and
genomic regions. Like classical physio-
logical or behavioral phenotypes, genetic
factors influencing high-throughput
measures of transcript, protein, and
metabolite abundance can be identi-
fied by QTL mapping. To date, such
analyses mostly have been applied to
gene-expression microarrays, mapping
gene expression QTLs (eQTLs). This
largely is related to technical constraints,
because whole-proteome expression
profiling currently cannot be done with
the same degree of sensitivity, coverage,
and throughput as mRNA profiling.

The strategy of performing genetic
linkage analysis on genome-wide
molecular profiles was formalized and
termed “genetical genomics” by Jansen
and Nap (2001). This proposal pri-
marily focused on gene-expression
microarrays and posited that mapping
eQTLs would enable researchers to
construct robust gene networks as well
as link these networks to metabolic or
other phenotypes. The investigators

s0
suggested that €QTL mapping could
greatly aid in the identification of can-
didate genes underlying classical QTLs
for disease traits. The first study to
carry out QTL analysis across genome-
wide gene expression microarrays
was conducted using an experimental
cross between two strains of the yeast
Saccharomyces cerevisiae (Brem et al.
2002). Subsequently, several investiga-
tions applied the approach to mam-
malian systems (Schadt et al. 2003;
York et al. 2005), including brain gene
expression (Chesler et al. 2003, 2005).

These carly genetical genomics studies
also characterized the two major classes
of eQTLs, labeled cis and #rans eQTLs,
which differ with respect to the posi-
tion of the eQTL relative to the gene
whose expression is altered (figure 3).

2 The term “white matter” refers o brain structures made up
primarily of nerve fibers that are enclosed by the myelin sheaths
and therefore have a whitish appearance. Conversely, the term
“gray matter” refers to brain structures composed mainly of the
bodies of nerve cells, which have no myelin sheath, resulting in
a grayish appearance.
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A cis eQTL is located at the same site
of the genome as the gene under study.
In contrast, a #rans eQTL can be located
elsewhere in the genome, away from
the gene whose expression is altered.

A good example of how a rrans eQTL
could manifest involves transcription
factors (TFs). These are proteins that
bind with regulatory DNA regions that
are located in front of a gene. Only
when the TF binds to the corresponding
DNA sequence can the first step

in the process of gene expression—
transcription—begin. The interaction
between the TF and the DNA involves
a certain part of the TF called the TF
DNA-binding domain that allows the
TF to recognize and bind with specific
regulatory DNA sequences. Through
this mechanism, certain TFs only may
activate the transcription of specific
sets of genes. Accordingly, a polymor-
phism at the DNA-binding domain of
a certain TF can affect the TF’s ability
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to recognize and bind its recognition
sites, causing altered expression of all
genes regulated by this TE In other
words, the abundance of all transcripts
from those genes would co-vary with
the TF polymorphism. Such a case
might be recognized by a clustering of
trans eQTLs at the site of the causal
polymorphism, sometimes referred to
as a regulatory hotspot. The
identification of #rans eQTL clusters
can be a powerful approach for identi-
fying key regulators underlying a com-
plex trait of interest.

Figure 4 depicts the eQTL results for
the same list of 307 ethanol-responsive
genes identified in the B6/D2 study
that earlier was used to construct coex-
pression networks. This analysis
revealed that these coexpression networks
share common eQTLs that drive this
coordinated expression. Furthermore,
the strongest eQTLs underlying many
of these genes mapped to one end of
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chromosome 7, forming a #rans eQTL
cluster. These findings provide prelimi-
nary evidence that acute ethanol—
responsive genes comprise a handful of
gene coexpression networks in the pre-
frontal cortex and that a key regulator
of these networks resides on chromo-
some 7. A more extensive analysis of this
type has recently been completed (Wolen
etal,, in press).

The genes comprising zrans €QTL
clusters often have biological functions
that have been conserved among species,
suggesting that these hotspots may
have a biological relevance. Accordingly,
the search for #rans eQTLs may allow
researchers to identify biological func-
tions associated with complex traits
through defining quantitative trait
gene networks (QTGNs). Mozhui and
colleagues (2008) have, for example,
dissected a #rans eQTL cluster on distal
mouse chromosome 1 and identified
a candidate gene (Fmn2) that they
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Figure 2 A) Gene networks that are regulated by acute alcohol exposure were identified in the same prefrontal cortex dataset used in Figure 1. Gene
nefworks were generated by applying a hard threshold of 0.75 to the gene correlation matrix. The inset box contains a cognate of the myelin
network (red) that was generated with expression data from the same strains following ethanol freatment. The ethanol-induced modifications
of this network include the addition of a novel connection between PlpT and Lparl. B) Scatterplots illustrating the correlation between PipT
and Lparl at baseline and following ethanol treatment. The effective absence of any correlation between these genes at baseline suggests
that this relationship is driven by ethanol exposure.
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propose has a major influence on the
expression of linked gene networks.
Moreover, a diverse group of pheno-
typic QTLs seemed to be located in
the same region, including several
related to ethanol.

Genetical Genomics Studies
fo Identify Gene Variants
Increasing Disease Risk

The integration of eQTL and classical
QTL data enables identification of key
markers of disease-causing variants.
The effectiveness of this approach was
demonstrated by a genetical genomics
analysis of liver expression data from

a population of mice placed on a high-
fat diet (Schadt et al. 2003). The pur-
pose of this diet was to model an obe-
sity-like phenotype, which was mea-
sured using fat-pad mass (FPM). QTL

C)

s

o i Goror SIEW Goo 2

mapping for FPM revealed a signifi-
cant QTL on chromosome 2 that also
harbored over 400 eQQTLs. By scan-
ning this region for ¢is €QTL-linked
genes that also were strongly correlated
with FPM, the researchers were able to
identify two novel obesity candidate
enes.

Saba and colleagues (2006) used a
similar approach to identify candidate
genes for alcohol preference and acute
functional tolerance to alcohol. This
large-scale study included rodent strains
selectively bred for ethanol phenotypes
(i.e., HAP and LAP mice) as well as a
subset of the BXD family of recombi-
nant inbred mice. Applying microarray
expression profiles using mRNAs
obtained from the entire brain, the
investigators identified independent
lists of genes whose expression differed

Gene
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TF A B

Gene
Expression

TF A B

Expression

Gene
Expression

between the HAP and LAP strains and
between the BXD strains with high
and low levels of acute functional tol-
erance. The genetic regulation of these
gene lists then was mapped using BXD
expression and genotypic data. High-
priority candidate genes were high-
lighted by screening for differentially
expressed genes with cis eQTLs that
overlapped previously mapped behavioral
QTLs for either alcohol preference
(Belknap and Atkins 2001) or acute
functional tolerance (Kirstein et al. 2002).
The rationale for prioritizing candi-
date QTGs on the basis of their having
cis €QTLs located at the same sites as
classical QTLs is based on the hypothesis
that the variability of a complex phe-
notype is linked to a particular locus
because the causal gene is being pro-
duced in variable quantities through a
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Figure 3 lllustration of the concept of cis and frans expression quantitative trait loci (eQTLs). A) The left-most gene (red) codes for a franscription
factor (TF) protein that activates the transcription of genes A (green) and B (blue) by binding to their respective promoters (gray). In the
wildtype, or “normal,” scenario all genes are transcribed at their full potential, as indicated by the bar graph on the right. B) A variant (i.e.,
polymorphism) (friangle) in gene A’s promoter region hinders TF binding, causing a reduction in the rate at which gene A is franscribed,
while gene B is unaffected. Thus, gene A is being regulated by a cis eQTL because ifs level of expression is associated with a nearby poly-
morphism located on the same chromosome. C) A polymorphism in the TF gene’s DNA binding region (hexagon)—the region of the TF
protein that binds to gene promoters—hinders binding with all downstream promoters, regardless of whether the regulated gene is located
near the TF gene, like gene A, or located on an entirely different chromosome, like gene B. In fact, all genes regulated by this TF would be
linked fo a frans eQTL af the site of this TF polymorphism.
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cis-acting polymorphism. This hypothesis
is somewhat of an oversimplification
and leaves out several important
caveats. Nevertheless, increasing
evidence supports the importance of
gene-expression variability in regulating
complex traits. In fact, recent evidence
indicates that SNPs associated with a
variety of complex traits are more likely
to contain ¢is €QTLs than normally
would be expected (Nicolae et al. 2010).
This indicates that the importance of
expression variability in complex trait
regulation is not limited to genetic
model systems and that it may be pos-
sible for GWASs and QTL mapping
studies to improve their track record
by incorporating expression data.

Dissecting Complex
Diseases Through Integrating
Genomic Approaches

The discussion above has illustrated how
traditional QTL mapping and GWASs
approaches can benefit from systems-
biological approaches by filling in critical
information about the molecular
phenotypes that stand between DNA
variation and complex disease (figure
5). The incorporation of data from
high-throughput molecular profiling
technologies, such as gene expression
microarrays, can better define a disease
by identifying groups of genes that
respond to or covary with disease-
associated traits. Network analysis of
disease-associated genes allows investi-
gators to move beyond static gene lists,
partially reconstruct the underlying
molecular pathways, and prioritize
genes based on their importance to the
larger network. Applying QTL mapping
to each gene’s expression trait makes it
possible to identify the genomic regions
that regulate each gene’s expression
and uncover the existence of regulatory
hotspots that exert enormous influence
over a gene network. The series of studies
discussed below has demonstrated how
effective these methods are for dissecting
complex traits, particularly when they
are integrated.

Zhu and colleagues (2004) followed
up the genetical genomics analysis of

liver expression data from mice on a
high-fat diet that was mentioned ear-
lier (Schadt et al. 2003) by generating
gene networks from the same microar-
ray gene-expression dataset. This analysis
included two distinct approaches to
network construction: The first strategy
formed networks on the basis of the
covariation among gene-expression
traits—that is, genes whose expression
changed in the same manner were con-
sidered linked. In the second strategy,
gene-network interactions were deter-
mined on the basis of the similarity of
their eQTL profiles. Thus, the networks
were constructed once without and
once with the benefit of genotypic and
eQTL data. Because links within gene
networks represent causal relationships,
analyses of these links can help researchers
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predict how a system will respond to
the perturbation of a specific gene.
Zhu and colleagues (2004) tested this
hypothesis by measuring differential
expression in response to a pharmaco-
logical substance that interfered with
the function of a central gene in both
predicted networks. They found that
the eQTL profile network was a
significandy better predictor of which
genes would be affected by the pharma-
cological perturbation than the network
constructed with expression data alone.
Therefore, integrating both gene-
expression and genotypic information
into network construction greatly
enhances the predictive value of gene
networks.

The ultimate goal of systems-level
analyses of complex diseases is to uncover
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Figure 4

Genome-genome plot of peak expression quantitative frait loci (eQTLs) for the same

dataset used in figure 1. Each point indicates the chromosomal position of a gene
versus the position of its peak eQTL. Point color is used to communicate the strength
of association between a gene and its eQTL, measured by logarithm of the odds (LOD)
score. A LOD score is a ratio that measures that probability that a gene is linked fo
genetic markers, versus the probability that it is not. Thus, the higher a LOD score, the
more likely a gene’s expression level genuinely is regulated by an eQTL. Points plotted
along the diagonal likely represent cis eQTLs, which also tend to have stronger LOD
scores. Perpendicular tick-marks along both axes show the distribution of data points.
Along the x-axis the dense clustering of fick-marks toward the proximal fip of chromo-
some 7 indicates the presence of a frans eQTL cluster, suggesting this region may
harbor an important regulator of the gene co-expression modules seen in figure 1.

314 ‘Alcohol Research: Current Reviews



information necessary to establish a
correlation between disease phenotype,
mRNA abundance, and the underlying
DNA polymorphism or causal gene
network. Schadt and colleagues

(2005) demonstrated this approach

of integrating genotypic data, gene-
expression data, and disease endophe-
notypes,” using the same liver expres-
sion dataset mentioned above, and a
novel network construction technique
termed likelihood-based causality model
selection (LCMS). The investigators
first identified all QTLs associated with
a classical phenotype and then win-
nowed the list of potentially associated
gene-expression traits on the basis of
their correlation or eQTL overlap with
the phenotype of interest. Candidate
genes then were ranked by applying

Expressian Profile

Disease Associated

the LCMS technique, which uses the
eQTL data to establish causal relation-
ships between DNA loci and tran-
scripts as well as between transcripts
and phenotypes and finally identifies
a model that best fits the data.

By ranking genes according to their
performance in these models, the
investigators identified several novel
obesity candidate genes as well as
uncovered additional support for the
involvement of a gene called Hsd1161
that previously had been implicated in
obesity risk (Rask et al. 2002). Because
this gene seemed to be relevant to the
phenotype they were investigating, the
researchers then sought to reconstruct
the gene network in which Hsd1161
participates by performing the LCMS
procedure with Hsd11b1 as the trait
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Figure 5 Diagram of how the genomic approaches discussed here can be integrated to identify
gene networks and candidate genes for complex traits such as alcoholism. The
information flow indicates how gene networks, expression quantitative frait locus
(eQTL) and behavioral QTL analyses can be used together to identify candidate
genes as pofential fargets for intervention. Note that resulting networks or candidate
genes are entirely derived from experiments rather than relying on prior knowledge.
In some cases, use of biomedical literature on gene-gene interactions can be used
to augment such experimentally-derived networks.

of interest. The resulting network was
able to successfully predict genes that
would be affected by inhibition of
Hsd11b1. A similar approach has been
used by other investigators to identify
transcriptional networks associated
with ethanol sensitivity behavior in
the fruit fly Drosophila melanogaster
(Morozova et al. 2011). This progres-
sion from phenotype to gene network
to candidate gene and back to a gene
network is a striking example of the
promise that combining genetical
genomics and gene-network analysis
provides for understanding complex
traits such as alcoholism.

As previously mentioned, such net-
work-based techniques also have been
applied to provide novel insight into
the functional consequences associated
with ethanol exposure in the mesocor-
ticolimbic reward pathway. Preliminary
results have identified several gene-
coexpression networks that are robustly
altered by ethanol in a tightly coordi-
nated fashion (Wolen et al., in press).
These studies used the BXD panel, so
that the genetic regulation of ethanol-
induced expression changes and behav-
ioral responses also could be examined.
Similar to results shown in figure 1,
this analysis has revealed that ethanol-
responsive gene networks are regulated
by a small number of loci that largely
are specific to a given network. At least
one of these loci overlaps a previously
mapped QTL for loss of righting reflex,
a measure of acute ethanol sensitivity
(Bennett et al. 2002; Markel et al.
1997). This work suggests that focus-
ing on identifying gene networks both
greatly reduces the complexity of whole-
genome expression data and provides
a wealth of hypotheses regarding both
functional implications and regulatory
mechanisms relevant to ethanol’s action.

3An endophenotype is a heritable trait or characteristic that

is thought to be an intermediate phenotype between a genetic
predisposition and a clinical disorder; for example, certain neuro-
biological characteristics have been noted in people with alcoholism
and may be used as endophenotypes to identify people at risk for
alcoholism. Endophenotypes are thought fo be useful for gene
identification under the assumption that they are simpler and
closer fo the genetic underpinnings of the disorder.
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expression profiles associated with ethanol
or alcoholism has provided modern
neuroscience with a wealth of molecular
information regarding ethanol’s effects
on the body. At the same time, alcohol
researchers must make sense of a plethora
of weak genetic signals and large lists
of genes whose expression changes in
response to alcohol. Newer approaches,
such as exome* sequencing studies and
certain approaches to analyzing gene
expression (e.g., RNA-Seq analyses),
promise added clarity but also may
deliver even more confusing data. By
combining behavioral, genetic, and
genomic studies through genetical
genomics and gene-network analysis
designs, researchers may be able to
construct gene networks rich in func-
tional relations to ethanol behaviors.
Additional refinements in ethanol-
related gene-network structures and
causal relation of such networks to
aspects of ethanol-induced behaviors
will provide a new generation of candi-
date genes for therapeutic intervention
in alcoholism. W
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