
PURPOSE: The endogenous cannabinoid system is involved in several 

physiological functions in the central nervous system including the 

modulation of brain reward circuitry and emotional homeostasis. 

Substantial evidence implicates brain endocannabinoid signaling 

in the processing of drug-induced reward states, wherein repeated 

exposure besets pathological changes in activity that contribute to the 

progression of alcohol use disorder. This review provides a narrative 

summary of recent studies exploring the interaction between alcohol 

exposure and changes in endocannabinoid signaling that may underlie 

the development of alcohol use disorder.

SEARCH METHODS: The authors began with an initial search for 

review articles to assist in the identification of relevant literature. This 

was followed by separate searches for primary literature and recent 

studies. The search terms “alcohol/ethanol” and “endocannabinoids” 

were applied, along with terms that covered specific objectives in 

reinforcement and addiction behavior. The content was further refined 

by excluding articles containing a broad focus on psychiatric disorders, 

polysubstance abuse, non-cannabinoid signaling lipids, and other 

criteria. 

SEARCH RESULTS: The initial search yielded a total of 49 review 

articles on PubMed, 13 on ScienceDirect, and 17 on Wiley Online, from 

which the authors garnered information from a total of 16 reviews. In 

addition to independent searches, this review provides information 

from a collection of 212 publications, including reviews and original 

research articles.

DISCUSSION AND CONCLUSIONS: The review discusses the 

effects of alcohol consumption on brain endocannabinoid signaling, 

including alcohol-based perturbations in endocannabinoid-mediated 

synaptic transmission, the modulation of alcohol-related behaviors by 

manipulating signaling elements of the endocannabinoid system, and 

the influence of dysregulated endocannabinoid function in promoting 

withdrawal-induced anxiety-like behavior. Notable emphasis is placed 

on studies exploring the possible therapeutic relevance of bolstering 

brain endocannabinoid tone at different stages of alcohol use disorder.
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cannabinoid responses outside of the central nervous system. 

Thus, the authors conducted a thorough reading of 16 reviews. 

Separate searches were then conducted to identify primary 

literature and recent studies using the terms “alcohol/ethanol” 

and “endocannabinoid” along with general terms covered in each 

section of the review (e.g., “reward,” “consumption,” “withdrawal/

abstinence,” “dependence,” “anxiety,” “FAAH inhibitors,” “MAGL 

inhibitors”). In some cases, this article refers to reviews and 

primary literature from major contributors in the field or from the 

respective laboratories of the authors of this review. All searches 

were restricted to the English language and generally reflect 

published work from 1990 to the present, with a few exceptions 

for foundational work on lipid-alcohol interactions. Most of the 

studies presented here concern data collected in rodent models. 

For information on clinical trial testing, the clinicaltrials.gov 

website was used. This review cites information from a total of  

212 publications.

The eCB System

The eCB system comprises two G-protein coupled receptors, 

their endogenous lipid ligands, and the enzymes that mediate 

synthesis and clearance of these molecules. Currently, there 

are two major types of cannabinoid receptors that are well 

characterized and cloned: cannabinoid receptor type 1 (CB
1
) and 

cannabinoid receptor type 2 (CB
2
). CB

1
 receptors are mainly found 

on presynaptic terminals of neurons in the brain,7,8 whereas CB
2
 

receptors are mostly expressed in immune cells of peripheral 

tissues,9 but are also found in the central nervous system.10-13 Both 

receptors are coupled to G
i/o

 protein second messenger systems 

regulating the amount of cyclic adenosine monophosphate levels 

in the cell and, by extension, the concentration of intracellular 

calcium and potassium ions that facilitate synaptic transmission. 

The relative importance of CB
1
 versus CB

2
 signaling is still under 

investigation; however, CB
1
 receptors are abundantly found 

in mesocorticolimbic areas that are important for reward and 

motivation.2,14 

Currently, the best-studied endogenous ligands of 

cannabinoid receptors are two arachidonic acid derivatives, 

N-arachidonylethanolamine (anandamide or AEA) and 

2-arachidonylglycerol (2-AG). Several other endogenous 

compounds possess cannabinoid-like properties, although 

much regarding their pharmacological activity, synthesis, and 

metabolism remains to be characterized.15 AEA and 2-AG 

activate cannabinoid receptors with a high degree of specificity 

(see Figure 1A). AEA is a partial agonist of both cannabinoid 

receptors, with slightly higher affinity for CB
1
 than CB

2
 receptors. 

On the other hand, 2-AG is a full agonist of both receptors, 

exhibiting low to moderate affinity for each subtype, and with 

greater overall potency and efficacy than AEA.15,16 AEA and 

2-AG demonstrate some promiscuity to other receptor systems, 

Endogenous cannabinoids, or endocannabinoids (eCBs), are 

bioactive lipid molecules that modulate signaling activity of 

several physiological processes involved in pain, appetite, energy 

balance, stress/anxiety, immune signaling, and learning and 

memory. Although understanding of the eCB system has grown 

in complexity since its discovery by Raphael Mechoulam, it is now 

widely known that eCB systems play an important role in the 

regulation of brain reward and emotional homeostasis. Given the 

relevance of these physiological responses in motivated behavior, 

the hypothesis of the involvement of eCB systems in addiction has 

been widely investigated.1-3 Generally, these findings support a 

role for eCB signaling in mediating the positive reinforcing effects 

of substances with abuse potential, while repeated drug exposure 

elicits long-lasting changes aligned with the emergence of negative 

affective states during abstinence. While these changes ostensibly 

apply to more than one type of substance with abuse potential, the 

field has come to understand the strong relation between negative 

affective states and increased alcohol consumption that facilitates 

the development of alcohol use disorder (AUD).4 Extensive efforts 

have been made to study the role of eCB systems in alcohol-

induced pathologies.5,6 Highlighted here is recent work exploring 

the basis of alcohol-eCB interactions in the development of AUD. 

A brief overview of the molecular constituents involved in eCB 

synthesis and degradation is followed by a foray of the literature 

exploring the effect of alcohol consumption on brain eCB 

signaling. Emphasis is placed on cutting-edge research utilizing 

genetic and pharmacological approaches to discretely manipulate 

elements of eCB signaling. This review discusses these findings 

in terms of the purported roles of the eCBs in synaptic plasticity, 

stress, and anxiety, and further elucidates the therapeutic 

relevance of bolstering brain eCB tone in the possible treatment 

of AUD.

Search Methods and Results

Searches of the existing literature were primarily conducted on 

PubMed/PubMed Central. The authors first conducted a broad 

search of review articles to assist in the identification of primary 

literature. The terms “alcohol” or “ethanol” and “endocannabinoid” 

were searched, restricted to the “title/abstract” setting under the 

“Advanced Search Builder” function. The authors then activated 

search filters for “Reviews” published within 10 years of June 

2021. This search strategy led to the identification of 49 review 

articles. Similar search strategies in ScienceDirect and Wiley 

Online Library generated fewer citations (13 and 17, respectively), 

the majority of which were redundant. To narrow the search 

more specifically to the goals of the current work, the authors 

excluded reviews with a broad focus on psychiatric disorders or 

polysubstance use, fetal drug exposure, non-cannabinoid signaling 

lipids, phytocannabinoids and other metabolites, as well as eCB/

http://clinicaltrials.gov
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hydrolyzed to 2-AG by phospholipase C.26 Another alternative 

pathway is by the dephosphorylation of arachidonic acid-

containing lysophosphatidic acid by a phosphatase.27 

Once released into the synaptic cleft, AEA and 2-AG exert 

their effects through the retrograde activation of CB
1 

receptors 

located on presynaptic terminals, followed by rapid termination 

of signaling via multiple degrading enzymes. In this regard, AEA is 

primarily degraded by fatty acid amide hydrolase (FAAH) into free 

arachidonic acid and ethanolamine,28 whereas monoacylglycerol 

lipase (MAGL) is the main enzyme involved in the hydrolysis of 

2-AG to produce arachidonic acid and glycerol.29 Interestingly, 

these clearance enzymes are located in different cellular 

compartments. FAAH is mainly localized to the postsynaptic cell, 

suggesting a key role for this enzyme in monitoring interstitial 

AEA concentrations. By contrast, MAGL is mainly found in the 

presynaptic terminal and contributes to the inactivation of 2-AG 

near its site of action.30 This configuration would suggest that 

AEA and 2-AG assume different roles in eCB signaling despite the 

signaling redundancy to cannabinoid receptors. The enzymatic 

clearance of 2-AG is mostly driven by MAGL,31 although other 

enzymes such as alpha/beta-hydrolase domains 6 and 12 

including peroxisome proliferator-activated receptors (PPARs) 

and the orphan G-protein coupled receptors 55 (GPR55) and 

119 (GPR119).17-20 AEA is also known for exerting potent agonist 

effects on transient receptor potential vanilloid type 1.21 

Unlike classical neurotransmitters, eCBs are not stored in 

intracellular compartments but instead are produced “on demand” 

from membrane lipid precursors in the postsynaptic membrane 

(see Figure 1B). AEA is produced from the phospholipid precursor 
N-arachidonoyl-phosphatidylethanolamine (NAPE) by a NAPE-

specific phospholipase D (NAPE-PLD).22 Interestingly, knockdown 

of NAPE-PLD only moderately depletes AEA signaling pools, 

suggesting that AEA contains several redundancies in its 

biosynthesis.23 On the other hand, 2-AG is tightly coupled to the 

production of diacylglycerol from the hydrolysis of an inositol 

phospholipid by a phospholipase C, which is rapidly converted to 

2-AG by two sn-1-specific diacylglycerol lipase (DAGL) isoforms 

(DAGL-alpha and DAGL-beta).24,25 Emerging research suggests 

that 2-AG, although widely regarded as the primary synthase, 

also may be influenced by alternative biosynthetic pathways. 

One pathway involves the hydrolysis of phosphatidylinositol by 

a phospholipase A to form a lysophosphatidylinositol, which is 

 




































































Figure 1. Endocannabinoid signaling and biosynthetic/degradation mechanisms. A: Schematic representation of the synaptic 
organization of the main components of the endocannabinoid system, including established routes of AEA and 2-AG metabolism. 
B: Metabolic pathways of synthesis and degradation of AEA and 2-AG. See text for details. Note: 2-AG, 2-arachidonylglycerol; 
2-arachidonoyl-LPA, 2-arachidonoyl-sn-glycero-3-phosphate; AA, arachidonic acid; ABHD6/12, alpha/beta-hydrolase domains 6 and 12; 
AEA, anandamide; CB

1
, cannabinoid receptor type 1; CB

2
, cannabinoid receptor type 2; COX-2, cyclo-oxygenase 2; DAG, diacylglycerol; 

DAGLα/β, diacylglycerol lipase-alpha/beta; EMT, endocannabinoid membrane transporter; FAAH, fatty acid amide hydrolase; GPR55, 
G-protein coupled receptor 55; HETE-EAs, hydroxyeicosatetraenoyl-ethanolamides; HETE-Gs, hydroxyeicosatetraenoyl-glycerols; 
LOXs, lipoxygenases; LPI, lysophosphatidylinositol; lyso-NAPE, lyso-N-arachidonoyl-phosphatidylethanolamine; lyso-PLC, lyso-
phospholipase C; lyso-PLD, lyso-phospholipase D; MAGL, monoacylglycerol lipase; NAPE, N-arachidonoyl-phosphatidylethanolamine; 
NAPE-PLD, N-arachidonoyl-phosphatidylethanolamine-specific phospholipase D; p-AEA, phospho-anandamide; PG-EAs, prostaglandin-
ethanolamides; PG-Gs, prostaglandin-glycerols; PLA, phospholipase A; PLC, phospholipase C; PPARs, peroxisome proliferator-activated 
receptors; sPLA

2
, soluble phospholipase A

2
; TRPV1, transient receptor potential vanilloid type-1.
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(ABHD6/12)31,32 and FAAH33 have been shown to metabolize 2-AG 

under certain conditions. AEA and 2-AG also may be oxidized by 

cyclo-oxygenase 2 and several lipoxygenases34,35 contributing 

to the pool of liberated arachidonic acid moieties that can be 

targeted for eicosanoid production. Overall, these metabolic 

enzymes play a key role in the production and maintenance of AEA 

and 2-AG signaling, which portend downstream effects on the 

regulation of the chemical synapse. 

Neurochemical Role of eCBs in 
Synaptic Plasticity

The role of the eCB system in synaptic plasticity largely stems 

from the findings that stimulation of cannabinoid receptors 

modulates the release of neurotransmitters at excitatory and 

inhibitory synapses. Further research has characterized the 

importance of eCB signaling in providing inhibitory control of fast-

acting transmitters such as glutamate and gamma-aminobutyric 

acid (GABA), as well as in modulating activity of other small 

molecules, such as mesolimbic dopamine.36 More generally, eCBs 

contribute to the shaping of synaptic activity in mesocorticolimbic 

areas of the brain, which—depending on the strength, frequency, 

and duration of transmission—can have both immediate and long-

lasting consequences on synaptic function.37-42

 Triggering eCB-CB
1
 receptor signaling results in short-term 

adjustments in neurotransmitter release that modulate activity 

of the postsynaptic cell via depolarization-induced suppression 

of excitation or inhibition.43-45 These transient forms of plasticity 

typically last a minute or less and are more strongly associated 

with 2-AG than AEA signaling, although both lipids have been 

implicated in such responses.42 Activation of eCB-CB
1
 receptor 

signaling can also facilitate more persistent forms of synaptic 

plasticity, such as long-term depression (LTD). These events vary 

with the nature of synaptic stimulation but generally persist 

anywhere from hours to weeks.42 The eCB system has long 

been observed to mediate plasticity in brain regions involved in 

the etiology of addiction, including the ventral tegmental area, 

nucleus accumbens (NAc), prefrontal cortex (PFC), hippocampus, 

amygdala, and dorsal striatum.1,42,46 In this regard, several 

conceptualizations of addiction theory propose that drug and 

alcohol exposure result in the disruption of plasticity mechanisms 

involved in learning and memory, which may contribute further to 

maladaptations in brain reward circuitry.47-49 

Acute and chronic alcohol exposure disrupts eCB-mediated 

synaptic plasticity. In this regard, low- to moderate-frequency 

stimulation of the dorsolateral striatum results in the elevation 

of eCB levels, which is thought to shift the balance of excitatory 

and inhibitory regulation of striatal neurons toward long-lasting 

disinhibition of synaptic output.50 Interestingly, acute alcohol 

exposure impairs this eCB-mediated process and further reduces 

LTD of medium spiny neurons at inhibitory relative to excitatory 

synapses.51,52 The disruption in eCB function is significant given 

that neural circuits in the dorsal striatum mediate behavioral 

processes related to reward-guided learning and habitual 

responding.53 In this regard, mice undergoing chronic intermittent 

alcohol vapor exposure exhibit impaired CB
1
-dependent LTD in 

the dorsolateral striatum that corresponded with increases in 

dorsolateral striatal activation and enhanced stimulus-reward 

learning.54 More recently, intermittent alcohol exposure during 

adolescence conferred long-lasting impairments in CB
1
-

dependent LTD in the hippocampus that were associated with 

disruptions in recognition memory.55 These findings suggest that 

alcohol dysregulates eCB signaling in a manner that fundamentally 

changes the regulation of the chemical synapse. Impairments in 

eCB-mediated plasticity likely reflect the loss of an important 

source of inhibitory constraint of neuronal synapses, leading 

to pathology in reward-based learning and the modulation of 

rewarded behavior that influences the progression of AUD.

Alcohol-Induced Alterations in 
Brain eCB Levels

One of the more compelling cases for alcohol-eCB interactions 

regards a series of neuroimaging studies that used positron 

emission topography to examine CB
1
 receptor binding in humans 

who smoke cannabis, and then separately in people with AUD.56-58 

Chronic cannabis use produced a striking pattern of CB
1
 receptor 

downregulation in several (but not all) corticolimbic regions. The 

results were not surprising given that the psychotropic effects 

of cannabis are largely mediated by CB
1
 receptor stimulation. 

Interestingly, patients with AUD showed a similar pattern of 

dysregulation, though were noted to exhibit decreased binding 

in all brain regions that were analyzed.59,60 Moreover, the effects 

produced by chronic cannabis use returned to normal function 

after a protracted abstinence period, whereas the disruptions 

in patients with AUD persisted after 4 weeks of withdrawal 

from alcohol use. These findings suggest that CB
1
 receptor 

downregulation is a common neuroadaptation to chronic 

substance use, although seemingly more extensive under alcohol 

exposure than with substances that directly interact with CB
1
 

receptors. This may suggest that alcohol has potent effects 

on the mechanisms of CB
1
 receptor expression and function 

(e.g., signaling transduction, epigenetic changes). Alcohol is also 

a notable activator of neuroinflammation, which over the course 

of repeated use may temper the anti-inflammatory responses 

of exogenous/endogenous cannabinoid signaling.61 Moreover, 

it is possible that alcohol may play a role in altering endogenous 

mediators of cannabinoid signaling (e.g., eCBs), from which lapses 

in the recovery of these signaling ligands influence the long-lasting 

deficits in CB
1
 receptor signaling.
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alcohol exposure was observed to increase 2-AG content in 

the rat hippocampus.70 In the PFC, acute alcohol exposure was 

associated with decreases in 2-AG content,71 whereas voluntary 

consumption in genetically selected rats that were bred for high 

alcohol preference was shown to increase 2-AG in this region.69 

Drinking behavior in Sardinian alcohol-preferring (sP) rats also 

was associated with increases in striatal 2-AG content that were 

most evident during the acquisition and maintenance phases.72 

These varied responses between studies are likely influenced 

by methodological differences in the procedure employed to 

quantify eCB tissue content,73 as well as by other experimental 

factors including the selection of rodent model, rat strain, 

duration and amount of alcohol exposure, and timepoints of 

withdrawal assessment. Emerging research also suggests the 

possibility of sex differences in alcohol-eCB interactions that 

may be specific to ovarian hormones.69,74

As opposed to bulk eCB tissue levels, some laboratories have 

utilized in vivo microdialysis approaches to estimate changes 

in eCB levels in flux.73 These studies likewise have reported 

region-specific effects in alcohol administration, as well as the 

influence of several factors involved in the administration, 

dose, contingency, and prior history of alcohol exposure.75,76 

Seminal work from Larry Parsons’ laboratory demonstrated 

that operant alcohol self-administration increased interstitial 

levels of 2-AG in the NAc without altering dialysate levels in 

the medial PFC.77,78 Systemic administration of moderate doses 

of alcohol also increased 2-AG levels in a similar manner in 

alcohol-naïve rats, and this effect was potentiated in alcohol 

Substantial literature indicates that brain eCB content is altered 

by substances with abuse potential. In this regard, alcohol alters 

AEA and 2-AG content in the brain, and chronic alcohol exposure 

generally leads to impairments in eCB signaling mechanisms. 

Early in vitro studies demonstrated that chronic alcohol 

exposure increases both AEA and 2-AG formation in human 

neuroblastoma cells and primary cultures of rodent cerebellar 

granule neurons.62-64 Subsequent studies have evaluated the 

effects of alcohol exposure on brain eCB levels and reported 

differential effects.65 Currently, it is difficult to draw a firm 

consensus of these data given the plethora of responses induced 

by alcohol administration, which may include—in addition to 

sample preparation, brain-region specificity, and methodological 

differences—the differential mobilization of AEA and 2-AG. 

Highlighted below are some of these findings, summarized in 

Table 1. 

Chronic alcohol exposure has been shown to increase AEA 

content in the limbic forebrain of rodents, whereas withdrawal 

decreased AEA in these brain regions.66-69 This increase in AEA is 

consistent with the reduction in FAAH activity following chronic 

alcohol exposure.66 By contrast, protracted (but not acute) 

withdrawal increased AEA content in the rat hippocampus.70 

Short-term alcohol exposure also has been reported to decrease 

AEA content in several brain regions including the amygdala, 

hypothalamus, and caudate putamen.71 Regarding 2-AG, several 

studies describe both increases and decreases in striatal 

2-AG content after chronic alcohol exposure.67,68,72 Moreover, 

acute and protracted withdrawal from chronic intermittent 

Table 1. Summary of Alcohol-Induced Alterations in Brain eCB Levels

Type of Study 
(cell/species)

Alcohol Exposure Effects Brain Region

In vitro (human neuroblastoma cells) Chronic alcohol ▲AEA N/A

In vitro (rodent cerebellar granule neurons) Chronic alcohol
▲AEA 
▲2-AG

N/A

Ex vivo tissue content (male Swiss Webster mice)
Chronic vapor inhalation ▲AEA Cortex

Acute withdrawal ▼AEA Cortex

Ex vivo tissue content (male Wistar rats)
Chronic liquid diet

▼AEA 
▼2-AG

Midbrain

▲AEA Limbic forebrain

Acute withdrawal ▼AEA Limbic forebrain

Ex vivo tissue content (male Sprague-Dawley rats)

Acute withdrawal
►AEA 
▲2-AG

Hippocampus

Long-term withdrawal
▲AEA 
▲2-AG

Short-term alcohol exposure 
(liquid diet for 24h)

▼AEA
Hypothalamus 

Amygdala 
Caudate putamen

▼2-AG PFC
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Type of Study 
(cell/species)

Alcohol Exposure Effects Brain Region

Ex vivo tissue content (female and male alcohol-
preferring AA rats)

Long-term alcohol 
consumption in female:

 Before drinking session

After drinking session

 
▲AEA

▲2-AG 

 

▼AEA

 
▲2-AG

 
PFC 
NAc 
CPu

CPu 
Amygdala 

Hippocampus

 
PFC 
CPu 

Amygdala 
Hippocampus

PFC

Long-term alcohol 
consumption in male:

Before drinking session

 
 
 

After drinking session

 

►AEA 
►2-AG 

 
 
 

▲AEA

PFC 
NAc 
CPu 

Amygdala 
Hippocampus

NAc 
CPu

Ex vivo tissue content (male sP rats)
Long-term voluntary alcohol 

consumption
▲2-AG Striatum

Ex vivo tissue content (male and female Wistar rats)
Acute withdrawal male

▼AEA 
▼2-AG

BLA 
vmPFC

Acute withdrawal female ▼AEA vmPFC

In vivo microdialysis (male Wistar rats)
Alcohol  

self-administration

▲2-AG 
►AEA 
►2-AG

NAc 
 

mPFC

In vivo microdialysis (male Wistar rats)

Acute alcohol administration in 
naïve rats (low doses)

Acute alcohol administration in 
naïve rats (high doses)

▲2-AG 
▼AEA

▲AEA
NAc

Acute alcohol administration in 
alcohol-dependent rats

▲▲2-AG 
► AEA

NAc

In vivo microdialysis (male Wistar rats) Chronic alcohol exposure
▼2-AG 
► AEA

CeA 
CeA / NAc

Note: ▲, increase;▼, decrease; ►, no effect; 2-AG, 2-arachidonylglycerol; AA rats, Alko alcohol rats; AEA, anandamide; 
BLA, basolateral amygdala; CeA, nucleus of the central amygdala; CPu, caudate putamen; mPFC, medial prefrontal 
cortex; NAc, nucleus accumbens; PFC, prefrontal cortex; sP rats, Sardinian alcohol-preferring rats; vmPFC, ventromedial 
prefrontal cortex.

Table 1. Summary of Alcohol-Induced Alterations in Brain eCB Levels (Continued)
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CB
1
 Receptors 

The consensus of preclinical work demonstrates that activation 

of CB
1
 receptors has a facilitatory effect on the motivation and 

consumption of alcohol. For example, systemic administration 

of the synthetic CB
1
 receptor agonists WIN 55,212-2 and 

CP 55,940 both increased spontaneous drinking in sP rats 

and mice.84-87 These synthetic agonists also increased operant 

responding for alcohol in Alko alcohol rats and Indiana P rats, 

as well as in non-selected Wistar rats.88-90 The facilitatory 

effect on alcohol consumption likely involves the activation 

of mesolimbic CB
1 

receptors, given that both systemic and 

intracranial infusions of WIN 55,212-2 into the posterior 

ventral tegmental area increased binge-like alcohol intake.91 

Additional studies have shown that WIN 55,212-2 administration 

increased the magnitude of excessive drinking elicited by the 

alcohol deprivation effect.92,93 Conversely, the pharmacological 

blockade of CB
1
 receptors by the CB

1
 antagonist/inverse agonist 

SR141716A (rimonabant) decreased alcohol consumption in 

non-selected and alcohol-preferring rats and mice.86,94-98 This 

decrease was observed in both dependent and non-dependent 

rodent models98,99 and was further associated with reduced 

motivation for alcohol.97,100 SR141716A also reduced the 

magnitude of alcohol deprivation effect responses in alcohol-

preferring rats72,90,101 and treatment with other selective CB
1
 

antagonists/inverse agonists recapitulated many of these 

same effects.102-105 Consistent with this, the genetic ablation 

of CB
1
 receptors in mice attenuated alcohol preference 

and intake,86,106-108 diminished the influence of SR141716A 

pharmacology,108 and reduced preference for environments 

previously paired with alcohol reward (e.g., conditioned place 

preference [CPP]).109 This likely has some bearing with the 

modulation of mesolimbic dopamine given that alcohol’s ability 

to increase NAc dopamine release was compromised in CB
1
 

receptor knockout mice.106 

Overall, these findings demonstrate that while activation 

of CB
1
 receptors promotes alcohol consumption, the 

pharmacological blockade or genetic deletion of these 

receptors has the opposite effect.110 The results underscore 

the importance of CB
1
 receptors in alcohol-related behaviors, 

although there is less clarity regarding the signaling substrates 

that mediate these responses. In this regard, the authors’ 

recent work demonstrated that SR141716A infused directly 

into the NAc shell decreased alcohol self-administration and 

this tempering response was recapitulated with the exogenous 

administration of 2-AG, but not AEA into this region.111 The 

findings suggest the possibility of 2-AG–CB
1
 signaling being an 

important mediator in the reinforcing effects of alcohol, although 

the possibility of non-cannabinoid signaling pathways has not yet 

been ruled out. These findings have translational relevance in the 

clinic given that polymorphisms of the Cnr1 gene that encodes 

for CB
1
 receptors were associated with symptoms of AUD.112 

dependence.76 More recently, the authors observed that alcohol 

dependence resulted in the reduction of baseline 2-AG levels in 

the central nucleus of the amygdala (CeA), conferring a blunting 

of alcohol’s mobilizing responses in this region.79 Regarding AEA, 

alcohol self-administration did not differentially alter interstitial 

levels of AEA across several brain regions.76,77,79 Interestingly, 

noncontingent alcohol administration reduced AEA in the 

NAc, whereas higher doses produced a milder increase in 

dialysate levels.75,76,80 Alcohol dependence also did not appear to 

drastically alter baseline AEA levels in the CeA.79 

Overall, it is clear that alcohol administration alters eCB 

responsivity, albeit in a manner that is dependent on several 

factors of exposure. What is less clear, however, is the manner 

in which alcohol may be mobilizing these responses, let alone 

with any given specificity to eCB signaling. Previous studies 

have shown that alcohol possesses cell membrane-disrupting 

properties that build tolerance over the course of repeated 

exposure. This resistance is conferred through the alteration 

of lipid membrane composition that includes changes in 

important glycerophospholipids such as phosphatidylinositol, 

cardiolipin, and several classes of amino glycerophospholipids 

(e.g., phosphatidylcholine, phosphatidylserine, 

phosphatidylethanolamine).81,82 The changes in phospholipid 

content vary with the nature of alcohol-induced perturbation, 

demonstrating higher depletion effects under intermittent 

versus continuous exposure conditions.83 Acute withdrawal also 

has membrane-disordering consequences in different cellular 

compartments that were previously acclimated to the presence 

of alcohol.81 Collectively, these findings suggest that alcohol 

exposure and withdrawal perturb the integrity of the cellular 

lipid bilayer, which may be important for determining the source 

of glycerophospholipid content available for eCB synthesis. In 

this regard, depletions in inositol phospholipid content would 

seemingly have profound implications in the ability to mobilize 

2-AG synthesis relative to AEA systems that contain biosynthetic 

redundancies for recuperating losses. 

The Influence of eCB Systems on 
Alcohol-Related Behaviors

Given the precedence for alcohol-eCB dysregulation, there are 

several avenues for which one might explore the role of eCB 

systems in addiction behavior. Although many studies point to 

the influence of CB
1
 receptors, recent advancements have made 

it possible to discretely manipulate eCB signaling elements. 

Highlighted below are some of these investigations that 

underscore the involvement of eCB systems in alcohol-related 

behaviors. Table 2 provides a summary of the main findings for 

cannabinoid receptors. 
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FAAH Inhibition 
The inhibition or genetic deletion of the clearance enzyme 

FAAH results in an increase in AEA levels as well as other 

acylethanolamines such as oleoylethanolamine and 

palmitoylethanolamine.122 Growing evidence suggests that 

impairment of FAAH may prime sensitivity to the reinforcing 

effects of alcohol and attenuate the negative consequences of 

excessive drinking. For example, acute administration of the 

FAAH inhibitor URB597 in mice increased alcohol preference 

and consumption, while also reducing sensitivity to the motor-

impairing responses of intoxication.85,123,124 Similar effects 

were observed in the genetic deletion of FAAH in mice,85,123,124 

that among other attributes promoted the quick recovery of 

alcohol-induced motor discoordination. The pharmacological 

effects of URB597 were further abrogated in CB
1
 receptor and 

FAAH knockout mice, and behavioral sensitization to repeated 

alcohol administration was diminished in these mouse lines.125 

Contrary to the findings in mice, URB597 administration did not 

alter voluntary drinking in alcohol-preferring rats or operant 

responding in non-selected Wistar rats.126,127 The authors 

observed similar findings with the administration of the selective 

FAAH inhibitor PF-3845 in both dependent and nondependent 

rats.79 Thus, although FAAH inhibition may differentially alter 

alcohol-related behaviors in mice, it is less clear whether similar 

phenotypes exist in rat models. Alternatively, several studies 

have demonstrated that inhibiting FAAH more discretely 

within corticolimbic areas of the brain resulted in observable 

phenotypes. For example, the local administration of URB597 

into the PFC of non-selected rats facilitated operant alcohol self-

administration, and this effect was consistent with observations 

of decreased FAAH expression and activity in the PFC of alcohol-

preferring Alko alcohol rats.126 By contrast, infusions of URB597 

into the CeA or the basolateral amygdala reduced alcohol self-

administration in Marchigian Sardinian alcohol-preferring (msP) 

rats, while having no effect in non-selected Wistar rats.128 The 

msP rat line has been previously shown to exhibit elevated FAAH 

activity in amygdalar brain regions,129 suggesting that facilitation 

or inhibition of alcohol drinking may largely depend on the 

status of AEA signaling in these corticolimbic regions. Thus, 

peripheral administration of an FAAH inhibitor is likely to offset 

the region-specific differences in AEA clearance, not surprisingly 

culminating in a null response on alcohol drinking.

Recent work has explored the contribution of FAAH 

mechanisms in driving alcohol-seeking behavior. Consistent 

with the studies above, FAAH inhibition in mice reduced 

reinstatement-induced drinking in a CB
1
-dependent manner.130 In 

rats, the peripheral administration of URB597 did not facilitate 

operant responding in an alcohol reinstatement model,127 nor did 

it moderate alcohol reinstatement driven by pharmacological 

stressors. However, the local administration of URB597 into 

the lateral habenula reduced voluntary consumption and 

preference in alcohol-dependent rats131 and reduced alcohol-

CB
2
 Receptors 

Although numerous findings corroborate the involvement of 

CB
1 

receptors in alcohol-related pathology, the possible role 

of CB
2
 receptors remains somewhat controversial. Brain CB

2
 

signaling is typically engaged under marked conditions of 

neuroinflammation and tissue trauma,113 and the extent to which 

drugs of abuse may elicit such phenotypes is currently under 

investigation. That being stated, sub-chronic treatment with 

the CB
2
 receptor agonist JWH-015 was reported to increase 

chronic stress-induced alcohol consumption, whereas similar 

protocols with the CB
2
 receptor antagonist AM630 prevented 

alcohol preference.114 The naturally available full-agonist of CB
2
 

receptors, beta-caryophyllene, had dissimilar effects and instead 

decreased preference and consumption as well as inhibited the 

expression of alcohol-induced CPP.115 Studies using the selective 

CB
2
 agonist JWH-133 also reported contradictory findings, in 

some cases showing the attenuation of alcohol-induced CPP and 

operant self-administration,116,117 and in others having no effect 

on these behaviors.118,119 The varied responses may be due to 

experimental factors such as the method and duration of alcohol 

exposure, the mouse strain utilized, or the dose of agonist 

administered prior to testing.

The blockade of CB
2
 receptors has somewhat more consistent 

effects that align with increased reinforcement and motivation 

for alcohol. For example, repeated administration of the 

antagonist AM630 increased operant alcohol self-administration 

in mice,117 although others reported no effects on alcohol 

intake or alcohol-induced CPP.114,118 Behavioral phenotyping 

in CB
2
 receptor knockout mice has shown that these animals 

exhibit increased alcohol preference and consumption, elicit 

more physical signs of alcohol dependence,120 and express 

higher alcohol-induced CPP than wild-type controls.118,120 By 

contrast, knockout mice of a different strain did not exhibit 

significant differences in limited-access drinking,118,121 but 

interestingly showed an increase in alcohol intake under forced 

alcohol exposure and group-housing conditions. These data 

suggest the possibility that CB
2
 receptors may tie into complex 

interactions of alcohol and stress that is facilitated by the 

social environment.121 Targeting the deletion of CB
2
 receptors 

in dopamine neurons also reduced alcohol consumption and 

mitigated the expression of alcohol-induced CPP in DAT-

Cnr2 conditional knockout mice.116 These findings may bear 

some translational relevance in the clinical field given that 

polymorphisms in the CB
2
 receptor gene (Cnr2) were associated 

with AUD in Japanese populations.114 

Inhibition of eCB Clearance
The modulation of cannabinoid receptors provides a strong basis 

for alcohol-eCB interactions; however, the recent development 

of novel pharmacological and genetic tools that prevent the 

clearance of eCBs provides a means to discern the roles of 

these lipids in alcohol-induced behavior. Table 3 summarizes the 

information below.
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behaviors. AM404 is thought to prevent the uptake of AEA and 

2-AG, in effect prolonging synaptic signaling of these lipids.136-138 

In mice, AM404 reduced alcohol-seeking behavior and 

consumption.139 Similarly, this compound reduced alcohol self-

administration in Wistar rats at doses that did not alter saccharin 

self-administration, though no effects were observed in cue- or 

stress-induced reinstatement models.140

MAGL Inhibition
Although many studies have characterized the role of AEA/

FAAH signaling systems on alcohol-related behaviors, the 

possible relevance of 2-AG/MAGL is only beginning to be 

explored with the development of selective and efficacious tools 

for inhibiting MAGL. In this regard, the authors have shown that 

local administration of the selective MAGL inhibitor URB602 

seeking behavior; these effects were effectively reversed by co-

administration of rimonabant. The lateral habenula has garnered 

recent interest in the addiction field given its role in mediating 

negative valence information that may contribute to the negative 

symptoms of withdrawal.132 Dysregulation of FAAH is also 

observed in the clinic, given that a missense mutation in FAAH 

(e.g., the C385A polymorphism) was associated with heightened 

prevalence of AUD,133,134 and increased risk of developing alcohol 

problems in young people.135

Inhibition of eCB Transport 
Currently, the mechanisms mediating fatty acid sequestration 

and membrane transport of the eCBs are unclear, although a 

few studies have elucidated the effects of an active metabolite 

of acetaminophen (i.e., AM404) in modulating alcohol-related 

Table 2. Summary of CB Receptor Influence on Alcohol-Related Behaviors

CB Receptor Manipulation Effects

CB
1
 receptor agonists

▲spontaneous drinking in alcohol-preferring rodents 
▲alcohol SA in rats 
▲binge-like alcohol intake in mice 
▲alcohol-seeking behavior

CB
1
 receptor antagonists

systemic administration 
 
 
 

localized infusions: 
intra-NAc 

 
intra-VTA 

 
intra-mPFC 

 
intra-PFC

▼alcohol preference 
▼alcohol consumption in rodents 
▼alcohol-seeking-behavior 
 
 
▼alcohol SA 
 
▼alcohol SA 
 
►alcohol SA in normal rats 
 
▼alcohol SA in alcohol-preferring rats

CB
1
 receptor knockout mice

▼alcohol preference 
▼alcohol consumption in rodents 
▼CPP 
▼alcohol-induced NAc dopamine

CB
2 

receptor agonists

▲alcohol consumption in stressed mice 
▼CPP / ►CPP 
▼alcohol preference 
▼alcohol consumption / ►alcohol consumption 
▼alcohol SA

CB
2 

receptor antagonists ▲alcohol SA

CB
2
 receptor knockout mice

▲alcohol consumption 
▲alcohol preference 
▲physical signs of withdrawal 
▲CPP

Note: ▲, increase;▼, decrease; ►, no effect; CB, cannabinoid; CB
1
 receptor, cannabinoid receptor type 1; CB

2
 receptor, 

cannabinoid receptor type 2; CPP, conditioned place preference; mPFC, medial prefrontal cortex; NAc, nucleus 
accumbens; PFC, prefrontal cortex; SA, self-administration; VTA, ventral tegmental area. 
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Endocannabinoids and Withdrawal-
Related Anxiety

Repeated cycles of alcohol intoxication and withdrawal induce 

neuroadaptations that alter the motivational mechanisms 

involved in compulsive alcohol seeking and drinking.141 Although 

initial use is motivated by the hedonic effects of alcohol, 

prolonged exposure results in the blunting of brain reward 

pathways that are overcome pharmacologically by escalating 

alcohol intake. At the same time, opponent processes involved 

in the remediation of mood states gain traction and contribute 

to the expression of negative affect during periods of alcohol 

abstinence. This rise in sensitivity marks a transition point where 

alcohol use becomes an effective means of alleviating negative 

behavioral states, thus creating a psychological tangent for the 

into the NAc shell reduces operant alcohol self-administration in 

rats.111 In addition, acute administration of the inhibitor MJN110 

reduced operant self-administration in alcohol-dependent rats, 

and in separate studies reduced voluntary drinking in dependent 

mice using the inhibitor JZL184.79 Consistent with these findings, 

increased MAGL activity was observed in the lateral habenula 

of dependent rats, and intracranial infusions of JZL184 reduced 

alcohol consumption in a CB
1
-dependent manner.131 Thus, 

as opposed to the varied responses obtained with systemic 

FAAH inhibitors, the dysregulation of 2-AG/MAGL signaling in 

dependence appears to be a pervasive or stable phenotype. That 

stated, a more time-dependent profiling of the changes induced 

by chronic alcohol exposure and withdrawal is warranted and 

should provide a better means of discerning the therapeutic 

potential of FAAH and MAGL inhibitors in AUD. 

Table 3. Summary of eCB Clearance Inhibition Influence on Alcohol-Related Behaviors

eCB Clearance Manipulation Effects

FAAH inhibitors

systemic administration

 

localized infusions: 
intra-PFC

intra-amygdala

 
intra-LHb

▲alcohol preference in mice, but not rats 
▲alcohol consumption in mice, but not rats 
▼sensitivity to alcohol intoxication

▲alcohol SA in rats

▼alcohol SA in msP rats 
►alcohol SA in Wistar rats

▼alcohol preference in alcohol-dependent rats 
▼alcohol consumption in alcohol-dependent rats 
▼alcohol-seeking behavior

FAAH knockout mice
▲alcohol preference 
▲alcohol consumption 
▼sensitivity to alcohol intoxication

eCB transport inhibitor
▼alcohol seeking 
▼alcohol consumption 
▼alcohol SA in rats

MAGL inhibitors

systemic administration

 
localized infusions: 

intra-NAc shell

intra-LHb

▼alcohol intake in alcohol-dependent rodents 
►alcohol intake in non–alcohol-dependent rodents

 

▼alcohol SA in rats

▼alcohol consumption in alcohol-dependent rats 
►alcohol consumption in non–alcohol-dependent rats

Note: ▲, increase;▼, decrease; ►, no effect; eCB, endocannabinoid; FAAH, fatty acid amide hydrolase; LHb, lateral 
habenula; MAGL, monoacylglycerol lipase; msP rats, Marchigian Sardinian alcohol-preferring rats; NAc, nucleus 
accumbens; PFC, prefrontal cortex; SA, self-administration.
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progression of AUD. Namely, withdrawal-induced increases 

in negative affective states (e.g., hyperkatifeia4) arise from the 

combination of stress signaling factors that activate areas of the 

extended amygdala (e.g., corticotropin-releasing factor [CRF]) 

and diminished performance of the mechanisms that constrain 

these responses through so-called “anti-stress” functions.142 

Growing evidence implicates the eCB system as a prevailing 

mechanism in the regulation of stress signaling,112,143,144 and by 

extension of this basic function, reflects the loss of a critical 

“anti-stress” mechanism in AUD.145 Highlighted below is some 

of the research supporting the framework for dysregulated 

eCB signaling in the manifest of negative affective behavior 

associated with alcohol withdrawal. 

Substantial evidence shows that eCB systems play a key 

role in the modulation of stress signaling, wherein disruptions 

of eCB signaling can facilitate anxiety-like states.146 CB
1
 

receptors are expressed in high or moderate densities across 

many regions involved in the expression of anxiety, including 

the CeA, basolateral amygdala, PFC, ventral hippocampus, and 

bed nucleus of the stria terminalis.8,147,148 As with the findings 

observed in human subjects with AUD, the downregulation of 

CB
1
 receptors appears to be an important attribute of mood 

affective disorders, at least within subcortical regions that are 

posited to interact more frequently with upstream hormonal 

regulators.149

Cannabis use in humans is known to alter anxiety-like 

states in a dose-dependent manner.150,151 For example, the 

acute administration of Delta9-tetrahydrocannabinol (THC) 

produces anxiolytic responses at low doses,152-155 but elicits 

anxiogenic effects with progressively higher doses.152,156,157 

Synthetic agonists of CB
1 

receptors display similar propensities in 

rodents that are abrogated with a CB
1
 receptor antagonist.158,159 

Interestingly, not all agonists modulate anxiety-like behavior 

in the same manner and instead display complex interactions 

with the testing environment. Indeed, low doses of the agonist 

HU-210 were observed to contain anxiolytic-like effects in a 

model of defensive withdrawal behavior when tested in novel 

environments, whereas similar doses under habituated settings 

produced anxiogenic-like responses.160 Given that CB
1
 receptors 

are located on the terminals of glutamatergic and GABAergic 

neurons,161 it is hypothesized that the regulation of anxiety-like 

behavior may relate more specifically to the subpopulation of 

neurons influenced by CB
1
 receptor activation. In this regard, 

studies using conditional mutant mice lacking CB
1
 receptors 

within specific neurons reported that low-dose activation of 

CB
1
 receptors on glutamatergic neurons was associated with 

anxiolytic-like responses, whereas high doses of agonist that 

disrupted GABAergic signaling were anxiogenic.162-164 

There is now considerable evidence demonstrating that 

elevations in eCB levels (via the inhibition of clearance 

mechanisms) modulate anxiety-like behavior without inducing 

the same biphasic responses obtained with CB
1
 receptor 

agonists. For example, the indirect stimulation of AEA signaling 

by FAAH inhibitors reduced the expression of anxiety-like 

behaviors in rodents but did so specifically under stressful or 

aversive conditions.129,165-168 Similar effects were obtained in 

FAAH knockout mice.169,170 In addition to AEA/FAAH signaling, 

there is evidence supporting the role of 2-AG/MAGL in the 

regulation of anxiety-like behavior. In this regard, the MAGL 

inhibitor JZL184 produced anxiolytic-like effects in rodents 

mainly under heightened stress conditions (e.g., brightly lit 

environments, following restraint stress).165,168,171-174 Unlike the 

anxiolytic effects of FAAH inhibitors that are strongly associated 

with CB
1
 receptor signaling,144 both CB

1
 and CB

2
 receptors have 

been implicated in the anxiety-reducing properties of MAGL 

inhibitors;173-176 to date, however, the preponderance of evidence 

suggests a CB
1
 receptor contingency. 

The authors’ recent work with msP rats provides collective 

evidence of the strong relation between dysregulated AEA/

FAAH signaling and innate symptoms of anxiety.129 In this 

regard, msP rats are genetically selected for increased alcohol 

preference and consumption, as well as for the heightened 

expression of anxiety-like behavior.177 Accordingly, the 

authors observed that msP rats displayed a sensitized stress 

response in the CeA and provided evidence of diminished AEA 

neurotransmission driven by increased clearance of this lipid 

by FAAH. Inhibition of FAAH with PF-3845 rescued the msP 

phenotype in several models of anxiety-like behavior, likely 

by restoring the integrity of stress-gating control in the CeA. 

Subsequent work demonstrated that local administration of the 

inhibitor URB597 into the CeA reversed the anxiety-producing 

effects of restraint stress, whereas no effects were observed in 

non-selected Wistar rats.128 Consistent with this, the authors 

also have examined the effects of FAAH and MAGL inhibitors on 

withdrawal-induced anxiety-like behaviors in rodents and found 

that both inhibitors were effective in reducing these responses.79 

Given the tempered effects of systemic FAAH inhibitors in 

alcohol drinking behavior, it is tempting to suggest that AEA and 

2-AG may be regulating different components of the addiction 

process, the former being more attuned to the regulation of 

basal anxiety levels and the latter being consequential of alcohol-

induced perturbations. How this may fit into a gain- or loss-of-

function model that can inform the therapeutic relevance of 

eCB clearance inhibitors remains to be elucidated. Additionally, 

the interactive role of eCB systems with stress-inducing factors 

such as CRF and other stress-constraining mechanisms such as 

cortisol/corticosterone is not well understood. In this regard, 

previous work suggests that neuroadaptations involving CRF-

driven stimulation of FAAH coincide with the depletion of AEA-

mediated constraint of the amygdala,129,178 whereas the delayed 

and blunted release of corticosterone in msP rats179 may present 

a challenge in mounting 2-AG remediation.180

Unlike the selective FAAH or MAGL inhibitors, the increase 

of AEA and 2-AG levels with the dual eCB clearance inhibitor 

JZL195 has little effect on reducing anxiety-like behavior 
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high doses of this drug induced neurotoxic effects in healthy 

individuals, ending in the death of one volunteer.198 It was later 

reported that BIA 10-2474 displayed substantial “off-targets” 

that were unique to this drug and likely responsible for inducing 

metabolic dysregulation and cellular death.199 Although future 

studies should continue to ascertain the safety profile of FAAH 

inhibitors, the positive responses observed in people with 

cannabis use disorder bode well for substance abuse treatment. 

Together with the recent development of selective MAGL 

inhibitors (ABX-1431) in clinical trial testing,200 serine hydrolase 

inhibitors represent a possible treatment avenue for restoring 

dysfunctional cannabinoid signaling in people with AUD.

Conclusion and Future Directions

Despite some inconsistencies in the literature, a preponderance 

of evidence suggests that alcohol exposure alters brain eCB 

signaling. Findings from the Parsons’ laboratory demonstrated 

that acute alcohol self-administration elicits increases in eCB 

release that are tempered over repeated exposure;76,79 however, 

readers are referred to the Alcohol-Induced Alterations in Brain 

eCB Levels section of this review for noteworthy distinctions. In 

addition, the method of alcohol exposure plays a marked role in 

the subsequent analysis of abstinence-related effects.201,202 That 

stated, chronic alcohol exposure is generally associated with 

the disruption of eCB clearance mechanisms, impaired eCB-

mediated forms of synaptic plasticity, and the downregulation 

of cannabinoid receptor function. The dysregulation of eCB 

signaling may be relevant given that eCBs play a prominent role 

in the maintenance of affective states and the constraint of stress 

responses, both of which serve as provocateurs of continued 

use and relapse. The remediation of eCB signaling remains an 

important goal for the possible treatment of AUD; however, this 

is unlikely to be achieved through the exogenous manipulation of 

CB
1
 receptors that are fraught with concerns.202-205 Accordingly, 

eCB clearance therapeutics may present an alternative pathway 

for restoring dysfunctional signaling elements, although further 

research is needed to better understand the consequence of 

eCB augmentation in dependence states across other relevant 

variables, including sex, brain regions, environment, emotional 

valence, pre-existing conditions, and neurohormones.206

Understanding of eCB signaling has greatly evolved since 

the discovery of eCBs nearly 30 years ago. This was fueled 

by technological advancements in the isolation, detection, 

and sequencing of the two primary eCBs, as well as the 

crystallization of biosynthetic enzymes and receptor systems 

that enable them. Cutting-edge technology continues to be 

an important driver in the field for the identification of novel 

molecular species and distinctions in eCB function. For example, 

mass spectrometry analysis can be broadly applied to investigate 

the brain lipidome, from which metabolic products of eCB 

and instead appears to have anxiogenic-like properties.165,181 

Recently, the authors observed evidence of an anxiolytic-like 

effect with high doses of JZL195 on the elevated plus maze, but 

similar treatments had no effect in the light/dark box assay.168 

Moreover, treatment with the MAGL inhibitor JZL184 in FAAH 

knockout mice, mimicking the putative inhibitor properties of 

JZL195, did not produce any effects on anxiety-like behaviors. 

It should be borne in mind that dual FAAH/MAGL inhibition 

produced cannabimimetic effects182 and prolonged changes 

in 2-AG signaling (via MAGL inhibitor treatment in FAAH 

knockout mice) that were associated with cannabinoid receptor 

dysregulation, tolerance to antinociception, and increased 

sensitivity to rimonabant-precipitated withdrawal behavior.183 

The potential role of dual FAAH/MAGL inhibition has not been 

thoroughly examined in alcohol-dependent rodents, but has 

been shown to contain neurogenesis-suppressing effects in the 

dentate gyrus in the same manner as the combined treatment of 

acute alcohol with a CB
1
 agonist.184

Other studies have observed that the loss of 2-AG signaling 

through the genetic or pharmacological inhibition of synthase 

mechanisms is associated with anxiogenic-like responses. For 

example, DAGL-alpha knockout mice exhibit increased anxiety-

like behaviors relative to their wild-type littermates,185,186 and 

these effects were reversed by the administration of JZL184.185 In 

the same regard, the DAGL inhibitor DO34 produced anxiogenic-

like effects,187 although the extent to which prior stress conditions 

may differentially influence the expression of anxiety-like 

behavior remains to be elucidated. Given evidence of alcohol’s 

mobilizing properties of 2-AG signaling, it is possible that DAGL 

inhibition may serve as a novel therapeutic for the treatment of 

AUD. Indeed, recent studies are providing insight into the possible 

therapeutic relevance of DAGL inhibition in reducing alcohol 

consumption without precipitating negative affective behaviors 

associated with chronic alcohol exposure and withdrawal.188 

In addition to preclinical work, clinical studies are underway 

to evaluate the therapeutic efficacy of eCB enzyme inhibitor 

treatment in humans. Currently, there is more information 

on pharmacological inhibitors of FAAH given that selective 

inhibitors of MAGL have been characterized only recently.189 

The FAAH inhibitor PF-04457845 has entered Phase 2 

clinical testing for the treatment or study of several conditions 

including chronic pain, fear response, Tourette’s syndrome, 

and cannabis use disorder. PF-04457845 was found to be safe, 

well tolerated, and—although showing negligible effects for 

analgesia—successful in facilitating fear extinction behavior 

in healthy individuals.190,191 More recently, PF-04457845 was 

reported to reduce withdrawal symptoms and cannabis use in 

patients with cannabis use disorder.192 Other FAAH inhibitors, 

such as JNJ-42165279 and ASP3652, also were found to be safe 

and well tolerated; although confirming the lack of efficacy for 

chronic pain, these FAAH inhibitors displayed anxiolytic effects 

in people with social anxiety disorders.193-197 By contrast, the 

FAAH inhibitor BIA 10-2474 caused widespread concern when 
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degradation are utilized by downstream signaling pathways 

(e.g., eicosanoids) to mediate neuroinflammation.207 This is 

coupled closely to the advancements of novel pharmacological 

tools such as DO34 and the NAPE-PLD inhibitor LEI-401208 

that will allow us to manipulate AEA and 2-AG signaling with 

great precision and selectivity. Moreover, the spatiotemporal 

resolution of such changes is fundamental to the understanding 

of eCB function and may provide insight on the purpose of 

having multiple endogenous ligands of cannabinoid receptors. 

Although traditionally studied with in vivo microdialysis, the 

recent development of G-protein coupled receptor activation-

based eCB sensors offers subsecond resolution kinetics and 

robust fluorescence-based detection in awake-behaving 

rodents.209 Finally, the development of novel positron-emission 

topography tracers such as [11C]MK-3168210 and [18F]T-401211 will 

allow the direct assessment of FAAH and MAGL activity under 

a number of planned clinical studies, including in people with 

AUD. Taken all together, emerging research appears to be on the 

precipice of divulging new information about the eCB system. 

The combination of selective pharmacology and in vivo capture 

methods remains an important endeavor in this research for 

answering fundamental questions of eCB function, its relation 

to stress and anxiety, and its higher-order influence in complex 

psychopathologies such as AUD and addiction. 
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