
PURPOSE: By 2040, 21.6% of Americans will be over age 65, and the population of those 
older than age 85 is estimated to reach 14.4 million. Although not causative, older age is 
a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately 
one-third of those older than age 85 are diagnosed with dementia. As current alcohol 
consumption among older adults is significantly higher compared to previous generations, 
a pressing question is whether drinking alcohol increases the risk for Alzheimer’s disease or 
other forms of dementia.
SEARCH METHODS: Databases explored included PubMed, Web of Science, and 
ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption 
on dementia risk, the literature covered included clinical diagnoses, epidemiology, 
neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and 
translational studies. Searches conducted between January 12 and August 1, 2023, included 
the following terms and combinations: “aging,” “alcoholism,” “alcohol use disorder (AUD),” 
“brain,” “CNS,” “dementia,” “Wernicke,” “Korsakoff,” “Alzheimer,” “vascular,” “frontotemporal,” 
“Lewy body,” “clinical,” “diagnosis,” “epidemiology,” “pathology,” “autopsy,” “postmortem,” 
“histology,” “cognitive,” “motor,” “neuropsychological,” “magnetic resonance,” “imaging,” 
“PET,” “ligand,” “degeneration,” “atrophy,” “translational,” “rodent,” “rat,” “mouse,” “model,” 
“amyloid,” “neurofibrillary tangles,” “α-synuclein,” or “presenilin.” When relevant, “species” 
(i.e., “humans” or “other animals”) was selected as an additional filter. Review articles were 
avoided when possible. 
SEARCH RESULTS: The two terms “alcoholism” and “aging” retrieved about 1,350 papers; 
adding phrases—for example, “postmortem” or “magnetic resonance”—limited the number 
to fewer than 100 papers. Using the traditional term, “alcoholism” with “dementia” resulted 
in 876 citations, but using the currently accepted term “alcohol use disorder (AUD)” with 
“dementia” produced only 87 papers. Similarly, whereas the terms “Alzheimer’s” and 
“alcoholism” yielded 318 results, “Alzheimer’s” and “alcohol use disorder (AUD)” returned 
only 40 citations. As pertinent postmortem pathology papers were published in the 1950s 
and recent animal models of Alzheimer’s disease were created in the early 2000s, articles 
referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; 
about 400 are herein referenced. 
DISCUSSION AND CONCLUSIONS: Chronic alcohol misuse accelerates brain aging 
and contributes to cognitive impairments, including those in the mnemonic domain. The 
consensus among studies from multiple disciplines, however, is that alcohol misuse can 
increase the risk for dementia, but not necessarily Alzheimer’s disease. Key issues to 
consider include the reversibility of brain damage following abstinence from chronic alcohol 
misuse compared to the degenerative and progressive course of Alzheimer’s disease, and the 
characteristic presence of protein inclusions in the brains of people with Alzheimer’s disease, 
which are absent in the brains of those with AUD. 
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In 2020, an estimated 17% of the U.S. population was older 

than age 65; this proportion is projected to rise to about 23% by 

2060.1,2 This prompts an urgent need for identifying potential 

and modifiable risk factors contributing to health decline.3,4 After 

tobacco, alcohol is the most misused substance in the United 

States and abroad.5 Even prior to the coronavirus disease 2019 

(COVID-19) pandemic, which contributed to increased drinking 

rates, alcohol consumption was notably accelerating in several 

demographic categories, including in men and women older than 

age 65.6-8 Consuming alcohol in harmful patterns—such as binge 

drinking (five or more drinks in men, or four or more drinks in 

women, in about 2 hours; where a drink is equivalent to 12 oz 

beer, 5 oz wine, or 1.5 oz distilled spirits)—occurs in more than 

25% of older Americans;5,9 annual growth trends in alcohol misuse 

are reported to be 2.4% in older men and 1.6% in older women.10 

Although not causative, older age is a risk factor for 

dementia: Every 5 years beyond age 65, the risk doubles;11 and 

approximately one-third of people over age 85 are diagnosed 

with dementia.12,13 Emerging data support alcohol misuse as a 

risk factor for dementia.14 This review considers the literature to 

determine whether chronic alcohol misuse increases the risks 

for (1) alcohol-related dementias, including Wernicke-Korsakoff 

syndrome (WKS); (2) Alzheimer’s disease; or (3) other forms of 

dementia (i.e., vascular, frontotemporal, or Lewy body dementia). 

Search Methods and Results

Table 1 presents details regarding the literature searches 

conducted in preparation for this review. For each section 

in this article, search terms initially included a combination 

encompassing alcohol use (e.g., alcohol consumption, alcoholism, 

binge alcohol, alcohol abuse, alcohol use disorder) and cognitive 

impairment (e.g., dementia, WKS, Alzheimer’s disease), 

which were then narrowed to the relevant topic (e.g., clinical 

diagnoses, epidemiology, neuropsychology). Several search 

terms describing alcohol use were used as the more traditional 

term “alcoholism” resulted in far more citation results than 

the currently accepted term, “alcohol use disorder (AUD).” For 

example, the combination of the traditional term “alcoholism” 

with “dementia” resulted in 876 citations, but using the currently 

accepted term “alcohol use disorder (AUD)” with “dementia” 

produced only 87 papers. Similarly, whereas the terms 

“Alzheimer’s” and “alcoholism” yielded 318 results, “Alzheimer’s” 

and “alcohol use disorder (AUD)” returned only 40 citations. The 

searches also considered subtypes of dementia in addition to 

Alzheimer’s disease, such as alcohol-related WKS and vascular, 

frontotemporal, and Lewy body dementias. Searches regarding 

animal models (i.e., rat, mouse) were narrowed by pathological 

terms or relevant mechanisms (e.g., amyloid, neurofibrillary 

tangles, presenilin).

The two terms “alcoholism” and “aging” retrieved about 1,350 

papers; adding phrases (for example, “postmortem” or “magnetic 

resonance”) limited the number to fewer than 100 papers. As 

pertinent postmortem pathology papers were published in the 

1950s and recent animal models of Alzheimer’s disease were 

created in the early 2000s, articles referenced span the years 

1957 to 2024. In total, more than 5,000 articles were considered; 

approximately 400 are referenced herein (i.e., only articles 

directly related to search terms were included).

Results of the Reviewed Studies

Human Studies

Clinical diagnoses
Diagnoses of psychiatric illnesses typically rely on use of one 

of two manuals: the International Classification of Disease (ICD) 

first published in 1984 by the World Health Organization 

(WHO; 11th edition [ICD-11] implemented in 2022); or the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) first 

printed in 1952 by the American Psychiatric Association (fifth 

edition [DSM-5] released in 2013). ICD codes are commonly 

used by primary care physicians, whereas DSM codes are more 

often used by psychiatrists and psychologists. Complicating 

consistent diagnoses is the evolution over time of concepts 

underlying clinical diagnoses of alcohol misuse or dementias. 

Thus, publications have considered diagnosis rates by comparing 

criteria in ICD to DSM,15-17 ICD versions,18,19 DSM-IV to DSM-5 

AUD,20-24 ICD AUD,25 ICD neurocognitive disorders,26 DSM 
neurocognitive disorders;27 bias in AUD28,29 and dementia30-32 

diagnoses has also been reviewed.

The diagnosis of an alcohol problem is best made by review of 

medical histories and interviews with patients. Laboratory tests 

have low sensitivity, and physical examinations are generally 

helpful only after the repercussions of alcohol misuse are 

apparent.33-35 Consequently, ICD diagnoses of AUD in primary 

care settings typically depend on the presence of health-related 

conditions, including alcohol-related mental health diagnoses, 

alcohol-related physical health diagnoses, or evidence for 

medication prescribed to treat alcohol-related problems.36 

AUD diagnosed using DSM-5 requires the patient to meet two 

of 11 criteria; however, specialists—including psychiatrists, 

psychologists, social workers, and licensed counselors—use DSM 

criteria for diagnosis with questionable consistency.24 Despite 

extensive public health efforts by the National Institute on 

Alcohol Abuse and Alcoholism, the Centers for Disease Control 

and Prevention, and the U.S. Preventive Services Task Force, 

current estimates are that fewer than 50% of people who visit 

primary care providers for alcohol-related issues are asked about 

the problem. Alcohol screening with validated questionnaires—

i.e., the 10-question Alcohol Use Disorders Identification Test 
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(AUDIT), the 3-question AUDIT-C on consumption, or the 

4-question CAGE (Cut down, Annoyed, Guilty, Eye opener)—

occurs in only about 2.5% of primary care visits in the United 

States.37-39 The Substance Abuse and Mental Health Services 

Administration (SAMHSA) is another source of alcohol use 

data based on self-report.40 As with ICD and DSM diagnoses, 

recognized limitations of SAMHSA data include frequent 

methodological changes (e.g., definitions of alcohol misuse), 

which hamper longitudinal comparisons.40 Irrespective of criteria 

used (i.e., ICD, DSM, self-report), AUD is underdiagnosed.37,41,42 

Henceforth in this review, “AUD” refers to diagnoses made 

via any version of ICD or DSM criteria; otherwise, levels and 

frequency of alcohol consumption are indicated.

“Dementia” is an umbrella term for a decline in mental 

(i.e., cognitive, intellectual) functioning that interferes with 

daily life but does not disturb consciousness or perception. 

More than 100 subtypes of dementia have been recognized, 

including proteinopathy (e.g., Alzheimer’s, frontotemporal, 

Lewy body dementia), vascular (i.e., related to blood vessels), 

and toxic/metabolic (e.g., alcohol-related, WKS) dementias.43,44 

ICD added the code for Alzheimer’s disease in 1975, and DSM 
added the diagnosis in 1983. Both ICD-11 and DSM-5 use 

the term “neurocognitive impairment” to encompass many 

types of dementia diagnoses. Diagnosing dementia is difficult 

owing to its insidious onset as well as the range and diversity 

of symptoms that can resemble normal aging.45,46 Indeed, 

differential diagnoses are imprecise47,48 as the clinical signs and 

symptoms of the many dementias are essentially the same;49,50 

criteria and nomenclature for dementia subtypes remain 

imperfect;51-53 and selective and specific in vivo biomarkers are 

still in development.54,55 Further, as formal dementia differential 

diagnoses with currently accepted criteria are resource-

intensive, up to 85% of dementia diagnoses are made by non-

specialist, primary care clinicians.56 

Epidemiological findings
Patients who develop Alzheimer’s disease may initially present 

with mild cognitive impairment (MCI), defined as a measurable 

age-accelerated decline in cognition.57 Among patients 

with documented MCI, one-third progress to a diagnosis of 

Alzheimer’s disease,58 which requires the presence of autopsy-

detected neuritic plaques and neurofibrillary tangles.49,57,59 

Alzheimer’s disease is frequently diagnosed (50% to 75% 

of dementia cases), but the diagnosis is rarely validated 

with imaging (i.e., positron emission tomography [PET]) or 

postmortem examination.60-63 When autopsies are conducted, 

between 12% and 23% of patients diagnosed antemortem 

with Alzheimer’s disease do not show defining neuropathology, 

suggesting that current prevalence estimates of Alzheimer’s 

disease are high.64,65 Vascular dementia, the second most 

diagnosed subtype (up to 20% of cases), often coexists with 

and is incorrectly diagnosed as Alzheimer’s disease.66,67 The 

Table 1. Literature Search Details

Relation evaluated Alcohol consumption and dementia

Databases used PubMed, Web of Science, and ScienceDirect

Literature covered Clinical diagnoses, epidemiological findings, neuroimaging, neuropsychological profiles, other 
biomarkers, postmortem pathology, and translational studies 

Literature search dates January 12, 2023–August 1, 2023

Literature search terms “aging,” “alcoholism,” “alcohol use disorder (AUD),” “brain,” “CNS,” “dementia,” “Wernicke,” 
“Korsakoff,” “Alzheimer,” “vascular,” “frontotemporal,” “Lewy body,” “clinical,” “diagnosis,” 
“epidemiology,” “pathology,” “autopsy,” “postmortem,” “histology,” “cognitive,” “motor,” 
“neuropsychological,” “magnetic resonance,” “imaging,” “PET,” “ligand,” “degeneration,” “atrophy,” 
“translational,” “rodent,” “rat,” “mouse,” “model,” “amyloid,” “neurofibrillary tangles,” “α-synuclein,” 
“presenilin”

Additional filters Species (i.e., “humans” or “other animals”)

Results*  1,339 “alcoholism” and “aging”

 876 “alcoholism” and “dementia”

 498 “alcohol consumption” and “dementia”

 318 “Alzheimer’s” and “alcoholism”

 231 “Alzheimer’s” and “alcohol consumption”

 87 “alcohol use disorder (AUD)” and “dementia”

 60 “alcoholism” and “aging” and “magnetic resonance”

 40 “Alzheimer’s” and “alcohol use disorder (AUD)”

 31 “alcoholism” and “aging” and “postmortem”

*Source: PubMed, August 14, 2023.
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remaining dementias are typically categorized as Lewy body, 

frontotemporal, or alcohol-related.68 

Compared with other types, alcohol-related dementia tends 

to have an early onset (i.e., ages 45 to 64) and slow progress.69-71 

In addition to alcohol-related dementia, thiamine deficiency 

(i.e., Wernicke’s encephalopathy) can occur in settings of high 

alcohol consumption and in malnutrition due to other causes 

(e.g., parenteral feeding, bariatric surgery, severe pregnancy-

related vomiting).72,73 The acute nutritional deficiency is 

reversible if adequately treated but can otherwise advance to 

WKS characterized by severe, persistent, cognitive impairment 

predominantly affecting memory.74 In contrast to Alzheimer’s 

disease, alcohol-related dementia and WKS are more commonly 

diagnosed in men than women75-77 and are less likely to be 

identified as such for several reasons, including underreporting 

of the extent of alcohol consumption, diagnosis perception bias, 

and a lack of standardized measures of thiamine.78,79 

Epidemiological studies support alcohol misuse and AUD 

as a risk factor for all types of dementia (i.e., collapsed across 

subtypes). For example, a study in France using ICD-10 codes 

to define AUD (codes F10.1–F10.9, Z50.2, F10.20–F10.23) 

and dementia (codes F00–F03, F05.1, F1x.73, G30, G31, I67.3, 

R54) found that AUD was a major risk factor for all types, but 

especially early-onset dementia (before age 65).77 A Danish cohort 

comparing people with ICD-10–diagnosed alcohol dependence 

(code F10.2) and dementia (codes F00–F03, G30) with controls 

matched on sex, date of birth, and municipality reported twice the 

hazard ratio for dementia among men and women with alcohol 

dependence.80 A U.S. study of more than 4,000 women veterans 

over age 55 that used ICD-9 codes to define AUD (codes 305.00, 

305.01, 303.00, 303.01, 303.02, 303.90, 303.91, 303.92) and 

dementia (i.e., a comprehensive ICD-9 code list provided by the 

Veterans Health Administration)81 determined that dementia 

developed in 1.1% of women without AUD and in 3.7% of women 

with AUD.60 The United Kingdom Whitehall II study—using 

alcohol consumption patterns derived from questionnaires 

and ICD-10–defined dementia (codes F00–F03, F05.1, G30, 

G31)—demonstrated that, compared with people who drank 

moderately (i.e., 1 to 14 alcohol units/week), those who drank 

heavily (i.e., more than 14 alcohol units/week) had increased risk 

for developing ICD-10 dementia.82 Similarly, an analysis of seven 

cohorts from the United Kingdom, France, Sweden, and Finland, 

using self-reported alcohol consumption metrics and ICD-10 

dementia (codes F00–F03, G30, G31, I20–I25, I61, I63–I66, 

I67.2, I67.3, I67.4, I67.8, I69.3), found that relative to people who 

drank moderately (i.e., 1 to 14 drinks/week), those who drank 

heavily (i.e., more than 14 drinks/week) had a 1.2-fold greater risk 

of developing dementia; and noted associations between high 

alcohol consumption and early onset dementia.83 

With respect to the effects of alcohol misuse and AUD on 

subtypes of dementia, findings are equivocal. A U.S.-based 

study using data from commercially insured and Medicare 

Advantage beneficiaries suggested that AUD (ICD-9 codes 

291*, 303*, 305.0*, 357.5, 425.5, 535.3, 571.0, 571.1, 571.2, 

571.3; ICD-10 codes F10*, G31.2, G62.1, G72.1, I42.6, K29.2, 

K70*, K85.2, K86.0, Q86.0) specifically increased the risk for 

Alzheimer’s disease (ICD-9 code 331.0; ICD-10 codes F00*, 

G30*).84 A study using “driving under the influence” as a proxy 

for alcohol addiction reported that it was associated with an 

earlier “Alzheimer’s disease” diagnosis; however, the ICD-9 codes 

used in this study (i.e., 290.0–290.3, 290.8–290.9, 331.0) were 

not specific for Alzheimer’s dementia.85 A study using criteria-

based diagnoses of dementia and chart-confirmed alcohol 

misuse (defined as “alcohol consumption that negatively impacts 

work or social life or leads to legal ramifications”) demonstrated 

that alcohol misuse was a frequent presenting symptom of 

frontotemporal but not Alzheimer’s dementia.86 Other studies 

yielded inconclusive results regarding the relationship between 

alcohol consumption and frontotemporal dementia.87,88 

Moderate to heavy alcohol consumption (i.e., ≥ 7 drinks/week 

for women, ≥ 14 drinks/week for men) increased the risk for all 

types of stroke (i.e., ischemic and hemorrhagic stroke) and may 

thus be a risk factor for vascular dementia,89-91 but results are 

inconsistent.92,93 

In summary, alcohol misuse and AUD increase risk for all types 

of dementia. Assuming that 20% of AUD goes unrecognized 

and 20% of dementias are incorrectly classified as Alzheimer’s 

disease, one might speculate that a significant proportion of 

dementia misclassification includes alcohol-related dementia. 

Reports that AUD specifically increases Alzheimer’s disease 

likely overestimate the relationship.94-96

Neuropsychological profiles
A constellation of executive cognitive functions—including 

working memory, set shifting (i.e., the ability to unconsciously 

shift attention between tasks), problem-solving, and attention—

are especially vulnerable to the effects of advancing age.97-99 

The neuropsychological profile of AUD uncomplicated by 

neurological confounders (e.g., WKS, hepatic encephalopathy) 

also includes deficits in executive functions.100-102 Additionally, 

people with uncomplicated AUD show impairments in episodic 

memory (i.e., the ability to learn, store, and retrieve information 

about unique personal experiences including time and place),103 

visuospatial processing (i.e., the ability to perceive, analyze, and 

manipulate visual patterns and images, such as copying complex 

figures or orienting three-dimensional objects),104,105 social 

cognition (i.e., the ability to interpret social information and 

behave appropriately),106,107 and gait and balance.108 

Features of WKS are persistent inability to remember 

new information (i.e., anterograde amnesia) and occasional 

confabulation.74,109 Compared with non-alcohol-related WKS, 

the neuropsychological profile of alcohol-related WKS is broader 

and commonly includes executive dysfunction.110-113 

Meta-analyses suggest that immediate and delayed memory 

tests (e.g., word-list recall) have high diagnostic accuracy in 

differentiating people with Alzheimer’s disease from individuals 
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without the disease but poorly discriminate those with and 

without MCI.114,115 Among available tools, the Montreal Cognitive 

Assessment (score ≤ 24), the Mini-Mental State Examination 

(MMSE, score ≤ 26), and the Dementia Rating Scale (score ≤ 124) 

appear to be efficient at discriminating MCI from aging without 

cognitive impairment.116,117 

Refined neuropsychological data can help distinguish 

dementia subtypes. For example, people with Alzheimer’s 

disease have more severe deficits in working and delayed 

memory than do those with WKS.118-120 In people with AUD or 

Alzheimer’s disease, the degree of impairment in verbal fluency, 

working memory, and frontal functions can be similar; memory 

problems, however, are more pronounced in Alzheimer’s disease 

relative to AUD.121 Similarly, although individuals with alcohol-

related dementia or vascular dementia can show executive 

control deficits, they have less severe memory impairments 

than observed in those with Alzheimer’s disease.122 Further, 

patients with alcohol-related dementia demonstrate stabilization 

of functional impairment with abstinence, whereas those with 

Alzheimer’s disease or vascular dementia show a progressive 

decline in cognitive functions.123 Indeed, in a longitudinal study, 

people with alcohol-related dementia with monitored abstinence 

showed improved performance on executive functioning tests, 

whereas people with Alzheimer’s disease performed worse 

on memory tests over the same time spans.124 The amount of 

alcohol consumed was unrelated to cognitive performance 

in patients with DSM-III–defined “primary degenerative 

dementia.”125 In a more recent study of people diagnosed with 

MCI (ICD-10 code F067) and evaluated by structured interview 

for alcohol use—i.e., low (less than 1 drink/week), moderate 

(1 to 14 drinks/week for men and 1 to 9 drinks/week for 

women), or heavy (more than 14 drinks/week for men and more 

than 9 drinks/week for women)—levels of alcohol consumed 

had no effect on MMSE scores; however, MMSE scores are 

notoriously insensitive to AUD-related cognitive decline.126,127

In summary, neuropsychological profiles differ between 

people with healthy aging, AUD, WKS, Alzheimer’s disease, and 

other subtypes of dementias. AUD adds a burden to aging in the 

executive domain. Although AUD, WKS, and Alzheimer’s disease 

all affect memory processes, the effects of Alzheimer’s disease 

on mnemonic functions are greater than those observed in AUD 

and WKS.

Postmortem neuropathology
Normal aging decreases the brain’s viability and increases 

its vulnerability to damage,128,129 but neuronal loss is not a 

salient feature.130-132 Instead, careful stereological studies 

have concluded that age-related changes in the central 

nervous system (CNS) in the cognitively intact, aging brain 

include alterations to neuron extensions (e.g., retraction 

of dendritic arbors and synapses);133,134 deterioration of 

non-neuronal cells (e.g., oligodendrocytes, astrocytes, 

microglia);135-138 and biochemical and molecular changes 

(e.g., reduced efficacy of neurotransmitters).139-142 These 

effects of aging in the healthy brain differ from those seen 

with pathological aging due to neurological conditions such 

as Alzheimer’s disease.143,144 A cardinal pathological feature 

of Alzheimer’s CNS tissue, which has been known for more 

than 100 years, is the progressive accumulation of insoluble 

fibrous materials, including extracellular plaques of beta-

amyloid (A-beta), which has two major isoforms (A-beta-42 

and A-beta-40), and intraneuronal neurofibrillary tangles 

composed of the microtubule-binding protein tau.145-147 The 

cause, effect, and reciprocity of A-beta and tau accumulation 

with neurodegeneration and symptoms of dementia are the 

subject of ongoing debates.49,57,59,148 Nevertheless, substantiation 

of an Alzheimer’s diagnosis continues to require postmortem 

identification of these characteristic protein inclusions in regions 

including the entorhinal cortex and hippocampus, where they 

contribute to severe neuronal loss and salient impairment 

in memory consolidation of newly experienced events.149,150 

Neuropathological observations further suggest that neuronal 

loss in a specific area of the hippocampus (i.e., subfield CA1) may 

be a specific marker for Alzheimer’s disease.151-153 

Other proteinopathies also present with neuropathological 

inclusions. Lewy body dementia is characterized by presence of 

protein aggregates (Lewy bodies) containing alpha-synuclein,154 

whereas frontotemporal dementia is associated with tau and 

TDP-43 (transactive DNA binding protein of about 43 kDa) 

pathology in at least 50% of cases.155-157 In vascular dementia, 

gross examination of the brain may reveal overt lesions, 

microinfarcts, or damage to blood vessels, and microscopic 

evaluation may detect accumulation of lipids or blood clots.158,159 

Other postmortem signs of vascular disease include white 

matter atrophy and calcification of arteries.43,160,161 

A coordinated cross-sectional analysis of six community-

based autopsy cohorts in the United States and the United 

Kingdom highlighted the complexity of the brain pathologies that 

underlie dementia. The analysis assessed 12 dementia-related 

pathologies in brains of those age 80 and older, including vascular 

pathologies (arteriolosclerosis, atherosclerosis, microinfarcts, 

lacunes, and cerebral amyloid angiopathy); Alzheimer’s 

disease-related pathologies (Braak neurofibrillary tangle stage, 

Consortium to Establish a Registry for Alzheimer’s Disease 

[CERAD] diffuse plaque score, CERAD neuritic plaque score, 

and hippocampal sclerosis); Lewy body dementia pathology; 

and TDP-43 pathology. Of the overall sample, which generally 

included more women than men, 40% had vascular-related 

pathology, 70% had Alzheimer’s disease-related pathology, 

and 68% of the cohort had pathology co-occurrence.162 Smaller 

studies similarly reported a high frequency of coincident 

neuropathology.163,164

WKS does not have clear neuropathological markers. 

Careful stereological approaches, however, have demonstrated 

neuronal loss in medial thalamus, mammillary bodies, pons, 
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consistent evidence for systematic, age-related volume 

increases in spaces filled with cerebrospinal fluid (CSF)—i.e., 

sulci, fissures, and ventricles—that occur at the expense of gray 

matter and may accelerate with older age.195-201 Brain gray matter 

structures exhibit differential patterns of aging, with convergent 

longitudinal data indicating an excessive vulnerability of 

prefrontal cortex.202-206 Age-related volume deficits in thalamus 

and cerebellum occur at a slower rate than declines in cortical 

gray matter.207-211 Gross white matter volume remains relatively 

stable across adulthood;201,212-214 however, appropriate imaging 

modalities (e.g., fluid-attenuated inversion recovery, diffusion 

tensor imaging) demonstrate more hyperintense inclusions (i.e., 

white matter hyperintensities [WMH]),215-218 and microstructural 

compromise in older relative to younger individuals.219-222

Cross-sectional neuroimaging reports support AUD-related 

volume shrinkage in specific brain structures, including frontal, 

temporal, and parietal cortices; diencephalon; brain stem; and 

cerebellum.223-229 In contrast to results of postmortem analyses 

of neuronal numbers, neuroimaging studies describe significant 

volume deficits in people with AUD, relative to healthy controls, 

in hippocampus and basal ganglia (i.e., caudate, putamen, 

nucleus accumbens) that may be accounted for by white 

matter compromise.224,230-235 Longitudinal studies that compare 

individuals with older age at AUD onset and relatively less 

lifetime alcohol use with individuals with younger age at AUD 

onset further support accelerated brain aging in frontal cortical 

volumes due to age–alcohol interactions and not just attributable 

to more years of alcohol misuse.227,236-239 Other longitudinal 

studies show that alcohol abstinence is associated with brain 

integrity improvement (i.e., volume recovery), whereas relapse 

precipitates further volume shrinkage.240-244 Individuals with 

AUD who relapse show continuing volume decline compared 

with those who achieve abstinence,225,241,245,246 but even 

reduced drinking without achieving or maintaining complete 

abstinence can improve brain structure and function.247 Similarly, 

a controlled longitudinal study that assessed individuals with 

AUD soon after withdrawal and then again after 2 weeks of 

sobriety suggested resolution of volume deficits specifically in 

hippocampal subfield CA2+3248 (also see Zahr et al., 2019232; 

Lee et al., 2016249). This reversibility of volume deficits with 

abstinence is in stark contrast to the irrevocable progression of 

Alzheimer’s disease.250,251 

Acute Wernicke’s encephalopathy also has characteristic 

changes evident on transverse relaxation time (T2)-weighted 

images showing bilateral, high signal intensities in the 

periaqueductal gray, mammillary bodies, thalamus, and 

hypothalamus.252-254 Quantitative MRI documents a graded 

pattern of accruing volume deficits in hippocampus, thalamus, 

mammillary bodies, cerebellum, and pons as disease severity 

progresses from AUD to WKS.230,255,256 Mammillary body 

shrinkage has been suggested as being able to differentiate WKS 

from Alzheimer’s disease,257,258 as have diffusion tensor imaging 

medulla, and anterior-superior vermis of the cerebellum.165,166 

A series of neuropathological analyses compared the effects of 

alcohol per se to distinct neurological conditions associated with 

chronic alcohol consumption, including WKS, hepatocerebral 

degeneration, Marchiafava Bignami disease, and central pontine 

myelinolysis. The studies concluded that alcohol as such does 

not contribute to a progressive or irreversible pathology.118,167-170 

Instead, quantitative histological analyses of individuals with 

uncomplicated AUD often use the term “alcohol-related 

brain damage” to refer to the plastic CNS changes associated 

with chronic alcohol use as discrete from neurodegenerative 

disease.171,172 Tissue loss occurring mainly in the frontal lobes 

and cerebellum of the brain in people with AUD is not associated 

with neuronal death.173-177 Indeed, no changes in neuron numbers 

have been documented in brain tissue (e.g., hippocampus, 

basal ganglia, serotonergic raphe nuclei, cholinergic basal 

forebrain) from people with AUD without liver pathology, 

nutritional deficiencies, or other complications.177-182 AUD-

related neuropathological changes are instead largely accounted 

for by retraction of dendritic arbors and shrinkage of white 

matter.173,174,183-188 

Alzheimer’s disease-related protein markers (i.e., A-beta, tau) 

are not affected by alcohol consumption. For example, A-beta 

plaques were not increased in the brains of people who drank 

heavily (more than 6 drinks per day for at least 10 years).189,190 

Further, men who drank moderately (not more than 4 drinks/

day or 14 drinks/week) showed less neurofibrillary tangle 

pathology compared with men who drank never or heavily.191 In 

a study of individuals with thiamine deficiency who who drank 

alcohol chronically, neurofibrillary pathology was found in the 

nucleus basalis (which is affected in WKS) but not in any other 

brain region.192 Further, heavy alcohol consumption (i.e., daily, 

socially disabling alcohol use, and continued drinking despite 

indisputable health-related or social damage) showed no 

statistically significant influence on the extent of alpha-synuclein 

pathology or incidence of total infarcts;193 however, very heavy 

alcohol consumption (more than 32 drinks/week) may increase 

hemorrhagic stroke.194 

In summary, evidence from postmortem histological 

analyses indicates that healthy CNS aging and AUD are not 

associated with significant neuronal loss, whereas Alzheimer’s 

disease and WKS show regionally specific neurodegeneration. 

Based on postmortem evaluations, uncomplicated AUD does 

not contribute to archetypal Alzheimer’s disease pathology 

characterized by the presence of protein inclusions. 

Neuroimaging biomarkers
An advantage of in vivo neuroimaging over postmortem study 

is the ability to track individuals longitudinally, which permits 

evaluation of causative factors in CNS volume changes and the 

consequences of behavioral modifications (e.g., cessation of 

alcohol drinking). Cross-sectional and longitudinal magnetic 

resonance imaging (MRI) studies in adults have provided 
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characterize Alzheimer’s disease are not elevated in people 

with AUD. Two PET studies using the Pittsburgh Compound-B 

([11C]PiB) ligand found no significant differences in global A-beta 

loads between people with AUD and healthy control study 

participants291,292 (also see Mendes et al., 2018293). Another 

report found that compared with no drinking, moderate drinking 

(1 to 13 drinks/week) was associated with lower [11C]PiB-

determined A-beta deposition.294 In contrast, people with AUD 

had larger WMH volumes than did healthy controls, suggesting 

an increased cerebrovascular risk in AUD.207,292 

In summary, healthy aging is characterized by nonlinear 

gray matter volume decreases, particularly in frontal regions; 

slower white matter decline; and a greater incidence, compared 

to younger brains, of WMH.227,295-298 AUD can amplify the 

severity and extent of age-related volume decline, especially 

in frontal regions, but abstinence is associated with significant 

volume recovery.246,299 In vivo diagnosis of Alzheimer’s disease 

necessitates PET imaging, but available evidence does not 

support AUD as contributing to Alzheimer’s disease PET 

markers. In vivo MRI of individuals with Alzheimer’s disease can 

demonstrate greater than age-corrected hippocampal atrophy, 

but deviations from age-related changes can be challenging 

to quantify. Instead, emerging data suggest that hippocampal 

subfield analyses (e.g., effects on CA1 in Alzheimer’s disease and 

on CA2+3 in AUD) may help with future differential diagnoses. 

CSF and blood biomarkers
The National Institute on Aging research framework supports 

CSF quantification of extracellular A-beta-42 and p-tau for 

accurate and early diagnosis of Alzheimer’s disease, but 

optimization and standardization of these measures is in 

progress.300-302 CSF A-beta-42 levels are low in people with 

Alzheimer’s disease compared to unaffected controls and reflect 

an increase in CNS amyloid plaques.303-305 Low CSF levels of 

A-beta-42 also can predict MCI and conversion from MCI to 

Alzheimer’s disease.306,307 As levels of CSF A-beta-42 are also 

low in Lewy body, vascular, and frontotemporal dementias, 

however, A-beta isoforms are being explored to help to 

differentiate dementia subtypes.308-310 Levels of CSF tau, p-tau, 

and their epitopes are high in people with Alzheimer’s disease 

compared to unaffected subjects and may indicate hippocampal 

atrophy, but levels of these CSF proteins are also high relative 

to healthy controls in other neurodegenerative diseases.311-313 

Combinations and ratios (e.g., A-beta-42/A-beta-40) of CSF 

A-beta-42, total tau, and p-tau and their variants are under 

investigation to improve success of differential diagnoses.314,315

Total tau is significantly elevated in people with acute 

Wernicke’s encephalopathy, but the overall pattern of CSF 

changes (involving A-beta, total tau, and p-tau) can clearly 

distinguish acute and chronic WKS from Alzheimer’s disease.316 

CSF tau and A-beta markers are present in only 11% of 

AUD patients with cognitive deficits;317 conversely, alcohol 

misuse is rarely observed in those with Alzheimer’s disease 

(DTI) metrics indicating abnormalities in anterior thalamus to 

hippocampus white matter tracts.259 

Deviations of hippocampal volume from normal age-

related decline have been identified as a sensitive indicator of 

Alzheimer’s disease pathology.22,234,260,261 Indeed, atrophy of 

entorhinal cortex and hippocampus may distinguish Alzheimer’s 

disease from healthy aging with up to 90% accuracy;262,263 

further, the rate and extent of CA1 atrophy may help distinguish 

Alzheimer’s disease from other forms of dementia.241,264-267 

Longitudinal studies suggest that the pattern of gray matter 

atrophy in people with MCI who are later diagnosed with 

Alzheimer’s disease mimics the pattern of atrophy observed 

in Alzheimer’s disease but is less extreme. However, in people 

with MCI who do not eventually receive an Alzheimer’s disease 

diagnosis, the pattern of gray matter atrophy is more comparable 

to that observed in healthy elderly individuals without 

dementia.268-270 Similarly, detrimental changes in regional (e.g., 

fornix, uncinate, cingulum) diffusivity in MCI quantified using 

DTI are less pronounced than those observed in people with 

Alzheimer’s disease.114,271,272 

A research framework for diagnosing Alzheimer’s disease, 

released by the National Institute on Aging in 2018, integrated 

neuroimaging biomarkers A, T, and N. In this framework, A 

represents A-beta plaques determined by cortical amyloid 

PET ligand binding (or CSF A-beta-42 levels); T represents 

fibrillar tau protein, determined by cortical tau PET ligand 

binding (or CSF phosphorylated tau [p-tau] levels); and N 

represents neuronal injury or neurodegeneration determined 

with fluorodeoxyglucose PET hypometabolism or MRI volume 

(typically hippocampal) atrophy.273-275 These three markers 

are used to distinguish among eight dementia profiles: normal, 

healthy individuals (A-T-N-); people with a condition along 

the Alzheimer’s disease continuum (A+T-N-; A+T-N+; A+T+N-; 

A+T+N+); and people with non-Alzheimer’s changes (A-T+N-; 

A-T+N+; A-T-N+).57,276 

Vascular dementias (which include at least six subtypes) are 

identified on MRI by presence of infarcts, small cavities (lacunes), 

and WMH.277-280 WMH are considered a neuroimaging feature 

of cerebral small vessel disease that can increase the risk for 

stroke and vascular dementia.281,282 As they are ubiquitous and 

heterogeneous, however, a better characterization of the extent, 

distribution, and cognitive correlates of WMH is necessary.283-285 

In support of a high co-occurrence of Alzheimer’s disease 

and vascular dementias, a literature review found a strong 

relationship between presence of amyloid and WMH burden286 

(also see Eloyan et al., 2023287).

Although separate structural neuroimaging studies in people 

with AUD, WKS, or Alzheimer’s disease report gray matter 

volume loss in common regions, including hippocampus,258,288,289 

a direct comparison among these patient groups demonstrates 

that hippocampal volume loss in people with AUD relative to 

Alzheimer’s disease is less severe.290 Further, PET markers that 
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contrast, unbiased screening approaches that indicate neuronal 

activity (e.g., glucose utilization, c-Fos expression) but not loss 

identify different regions affected by EtOH, including thalamus, 

colliculi, cerebellum, and pons.343-346 Longitudinal neuroimaging 

findings consistently report ventricular enlargement in response 

to binge and chronic EtOH exposure that is reversible upon 

abstinence.228,330,347-349 Indeed, among regions demonstrating 

reduced volume following EtOH exposure (e.g., retrosplenial 

and cingulate cortices, dorsal hippocampi, central and 

ventroposterior thalami, corpus callosum), most show significant 

recovery with abstinence.350,351 Volumes of the colliculi and 

periaqueductal gray, however, show persistent volume deficits 

with abstinence.350,351 Although the colliculi may be relevant 

to human AUD, they have rarely been investigated in humans, 

possibly because of the challenges in visualizing and quantifying 

colliculi by MRI.352

Relatively few papers have explored the effects of EtOH 

on the aged rodent brain. Following a single i.p. EtOH dose, 

older (18 months) compared with younger (postnatal days 70 

to 72) Sprague Dawley rats showed greater EtOH-induced 

ataxia (accelerating rotarod, aerial righting reflex) and cognitive 

impairment (i.e., longer latency to locate submerged platform 

on the Morris water maze).353 However, against expectations, a 

longitudinal in vivo study of F344 rats exposed to intragastric 

EtOH for 4 days354 showed greater transient tissue volume 

compromise in young rats (age 4 months) compared to older 

rats (age 17 months).331 By contrast, EtOH administration alters 

markers of astrocytes and microglia more significantly in older 

than younger animals. For example, chronic moderate EtOH 

exposure (daily 2 g/kg, i.p. doses for 45 days) increased glial 

fibrillary acidic protein (GFAP, an astrocyte protein expression 

marker) to a greater extent in older (age 19 months) than 

younger (age 3 months) Wistar rats.355 Similarly, a microglial 

mRNA marker that increased in response to EtOH resolved with 

abstinence in young but not older C57BL/6J mice356 (also see 

Marsland et al., 2022357).

Rodent models of Alzheimer’s disease
Several genetically modified (i.e., transgenic) mouse models of 

Alzheimer’s disease are now available. The first models used 

various constructs to overexpress amyloid precursor protein 

(APP), which is processed in the body by enzymes (i.e., beta- 

and gamma-secretases) to generate soluble amyloid peptide 

(A-beta) fragments.358 Mice with overproduction of total A-beta 

from APP exhibit extracellular A-beta deposits reminiscent of 

plaques in human brains as well as cognitive dysfunction.359-361 

However, these animals did not have neurofibrillary tangles or 

show neuronal loss. Second-generation mutant mice included 

overexpression of presenilin (PS), a constituent of the gamma-

secretase complex that cleaves APP.362 PS1 overexpression alone 

did not induce A-beta pathology;363 however, the combined 

expression of APP and PS1 increased pathogenic A-beta 

production and deposition, behavioral deficits, and neuronal 

biomarkers.318 Thus, CSF tau and A-beta markers may be useful 

in differentiating alcohol-related cognitive disorders from 

Alzheimer’s disease.319 

Although neuroimaging and CSF markers approved by the 

U.S. Food and Drug Administration can aid in detection and 

diagnosis of Alzheimer’s disease, the clinical implementation of 

these testing modalities is limited because of their availability, 

cost, and perceived invasiveness.320 Blood-based markers are 

also in development for earlier, faster, and more accessible 

diagnoses.321 Associations between blood and CSF tau and 

A-beta and other disease markers, however, and their ability to 

help with differential diagnoses are not fully established.322-325

Summary of human studies
The consensus among studies from multiple disciplines is that 

AUD can increase the risk for dementia, but not necessarily 

the risk of Alzheimer’s disease. A review of clinical and 

epidemiological data suggests that criteria and nomenclature 

of dementia subtypes need improvement. Neuropsychological 

and biological markers that can differentiate dementia subtypes 

are in progress but currently limited. Whether alcohol misuse 

contributes to an added burden on pre-existing Alzheimer’s 

disease remains an open and ongoing research question, which 

may be approached in animal models. Indeed, basic science 

strategies that can control alcohol exposure may help clarify 

controversies, including whether alcohol in the context of 

genetically induced Alzheimer’s disease pathology changes 

the extent, distribution, or signaling pathways of relevant 

biomarkers.

Translational Studies

Rodent models of AUD
In contrast to the human brain, the rat brain increases in weight 

and length with advancing age and demonstrates continued 

growth in older (e.g., age 763 days) relative to younger (e.g., 

age 109 days) rodents.326,327 Longitudinal imaging studies that 

followed animals for up to 19 months confirm accrual of body 

weight and total brain volume with increasing age in wild-

type Wistar rats, alcohol-preferring (P) and non-preferring 

(NP) strains derived from Wistar rats, and Fischer 344 (F344) 

rats.220,228,328-330 MRI studies further show an aging-related 

pattern in rats contrary to that observed in humans: Total CSF, 

gray matter, and white matter volumes continue to increase with 

older age.228,331 These fundamental differences in CNS aging 

between rodents and humans are critical to model in studies that 

consider the combined effects of ethanol (EtOH) exposure and 

Alzheimer’s disease-related pathology. 

Several susceptible brain regions have been demonstrated 

in rodents exposed to high EtOH levels via intragastric,332 

intraperitoneal (i.p.),333,334 or vapor335,336 protocols. 

Immunohistochemical staining procedures highlight 

degenerative effects of EtOH on corticolimbic circuitry.337-342 By 
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memory task), and a higher frequency of A-beta deposition 

and plaques in hippocampus.386 Also in APP/PS transgenic 

mice, binge EtOH treatment during adolescence (via four i.p. 

injections per week of 2.5 g/kg EtOH during postnatal days 

20 to 60) increased A-beta RNA and protein expression in the 

hippocampus at ages 6 and 12 months.387 In 3xTg-AD mice—the 

only transgenic model able to produce both A-beta and tau 

markers—EtOH exposed (via 4-month, free access to water 

or 25% EtOH), compared with saccharin-exposed (control) 

3xTg-AD mice, showed impaired spatial memory on the Morris 

water maze and upregulated A-beta-42/40, total tau, and p-tau 

1 month after EtOH exposure.388 Another study showed that 

EtOH exposure (6 weeks of 4 days/week vaporized EtOH) to 

3xTg-AD mice hastened cognitive impairment and increased 

levels of a different protein marker, alpha-synuclein (relevant to 

Lewy body dementias).389

Recent translational work highlights sex differences in the 

interaction of EtOH with Alzheimer’s disease-related pathology. 

EtOH exposure caused greater cognitive impairment in female 

than male “middle aged” (ages 6 to 9 months) wild-type C57BL/6J 

mice,390 which was associated with an increase in hippocampal 

amyloid levels.391 In mice with abnormal tau deposition (i.e., 

PS19 model with the T34 tau isoform), 16 weeks of intermittent 

access to water containing 20% EtOH increased the excitability 

of the locus coeruleus more in female than male mice.392 Finally, 

3xTg-AD adolescent and adult mice exposed to EtOH showed 

EtOH-related increases in total and hyperphosphorylated tau 

in female mice but not in male mice, which were hypothesized 

to be related to impaired lysosome function.393,394 These recent 

papers demonstrating EtOH effects in only female transgenic 

mice393,394 acknowledged previous findings that total tau and 

p-tau were increased in both sexes of 3xTg-AD mice,388 but did 

not comment on the underlying reasons for such discrepancies. 

Indeed, the relevance of sex-related findings in transgenic 

rodents to the human condition await a better understanding of 

the pathological mechanisms underpinning Alzheimer’s disease. 

Conclusions

Limitations of the current narrative review are that it failed to 

address all nuances of the potential relationship between alcohol 

misuse and dementia risk. For example, the contributions of 

a genetic predisposition to Alzheimer’s disease (i.e., presence 

of the apolipoprotein E epsilon4 allele, the major genetic 

risk factor) to the various metrics were not considered.92,395 

Further, an emerging literature showing a relationship between 

liver pathology—including alcohol-related liver disease—and 

Alzheimer’s disease was not explored.396-398

This literature review indicates that chronic alcohol 

misuse accelerates brain aging and contributes to cognitive 

impairments, including those in the mnemonic domain also 

loss.364-367 One of these models was the 5XFAD mouse line, 

which expresses five human APP and PS1 transgenes and results 

in mice with A-beta pathology, gliosis, synaptic degeneration, 

neuronal loss, and progressive cognitive deficits as early as  

4 months of age.368 Despite their aggressive phenotypes, these 

models also failed to develop neurofibrillary tangles. In efforts 

to replicate neurofibrillary tangle pathology, a mouse line was 

created that carried targeted insertions (knock-in mutations) of 

PS1, APP, and microtubule-associated protein tau (i.e., 3xTg-AD 

mice).369 The 3xTg-AD mouse line is a well-validated animal model 

that develops rapid, age-dependent, and progressive Alzheimer’s-

like neuropathology, including A-beta and tau tangles.370-372 

Although widely used, these models imitate only certain 

aspects of human Alzheimer’s disease pathology.373-375 Further, 

the amyloid peptides generated by mice are distinct from those 

produced by the human brain.376 Such gaps have led to a program 

initiated by the National Institute on Aging—the Model Organism 

Development and Evaluation for Late-Onset Alzheimer’s 

Disease (https://www.model-ad.org)—to fund development of 

Alzheimer’s disease mouse models that better recapitulate the 

human disease.

Rodent models of AUD and Alzheimer’s disease 
Only a few studies have evaluated how EtOH may exacerbate 

Alzheimer’s-related behavior and brain pathology in wild-type 

rodents. Compared to unexposed mice, wild-type C57BL/6J 

mice exposed to EtOH (1 month, free access to water, 10% or 

20% EtOH) showed impaired spatial memory and elevated 

hippocampal p-tau, but no change in total tau.377 Similarly, 

wild-type, male C57BL/6J mice exposed to both EtOH (via 

liquid diet for 7 weeks at 28% of total calories) and thiamine 

deficiency demonstrated nonspecific, whole-brain increases 

in A-beta (both A-beta-42 and A-beta-40 isoforms) protein 

levels compared to unexposed mice378 (also see Zhao et al., 

2011379). Finally, compared with unexposed animals, Sprague 

Dawley rats exposed to EtOH (via liquid diet for 5 weeks at 

about 36% of total calories) showed increased expression of 

APP and beta-site APP-cleaving enzyme 1 (BACE1, which is 

critical for A-beta expression) in hippocampus, cerebellum, 

and striatum.380 Of note, nonspecific, elevated levels of A-beta 

also have been observed in response to other age-related 

pathologies (e.g., hypertension, diabetes381,382), and elevations 

in p-tau can occur in response to other, particularly anesthetic, 

psychoactive agents.383,384

Findings observed in wild-type animals appear to be 

exaggerated in transgenic mice. For example, APP/PS1 mice 

exposed to EtOH (drinking in the dark for 1 month), compared 

to vehicle-treated APP/PS1 animals, showed greater memory 

deficits (i.e., Morris water maze performance), higher whole-

brain APP and BACE1 levels, and enhanced plaque formation.385 

Similarly, compared with unexposed mice, APP/PS mice exposed 

to 10 weeks of moderate EtOH in a two-bottle choice design 

showed deficits in nest building (but not in an object location 

https://www.model-ad.org
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affected in Alzheimer’s disease. The current literature analysis, 

however, agrees with a 2001 review published in this journal that 

alcohol misuse does not increase the risk for Alzheimer’s disease 

per se.399 Whether alcohol misuse or AUD increase the risk for 

alcohol-related or other forms of dementia may be clarified by 

improvements in neuropsychological tests or biomarkers better 

able to differentiate dementias in vivo.
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