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Brain imaging technology has allowed researchers to conduct rigorous studies of the 
dynamic course of alcoholism through periods of drinking, sobriety, and relapse and 
to gain insights into the effects of chronic alcoholism on the human brain. Magnetic 
resonance imaging (MRI) studies have distinguished alcohol-related brain effects 
that are permanent from those that are reversible with abstinence. In support of post-
mortem neuropathological studies showing degeneration of white matter, MRI studies 
have shown a specific vulnerability of white matter to chronic alcohol exposure. Such 
studies have demonstrated white-matter volume deficits as well as damage to selective 
gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural 
characterization of white matter, has extended MRI findings in alcoholics. MR spec-
troscopy (MRS) allows quantification of several metabolites that shed light on brain 
biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and 
MRS findings in neurological disorders that commonly co-occur with alcoholism, 
including Wernicke’s encephalopathy, Korsakoff’s syndrome, and hepatic encepha-
lopathy. Also reviewed are neuroimaging findings in animal models of alcoholism 
and related neurological disorders. This report also suggests that the dynamic course 
of alcoholism presents a unique opportunity to examine brain structural and functional 
repair and recovery.
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Apart from direct effects on the brain, 
excessive alcohol consumption is asso-
ciated with increased risk for trauma 
(i.e., traumatic brain injury) (Alterman 
and Tarter 1985; Chen et al. 2012), 
seizures (Eyer et al. 2011; Martindale 
et al. 2011), and stroke (de los Rios  
et al. 2012; Suzuki and Izumi 2013), 
each of which can have effects on brain 
structure independent of alcohol or 
each other. Furthermore, alcohol can 
alter the brain by affecting peripheral 
organs, including the digestive tract 
(e.g., Bienia et al. 2002; Duell et al. 
2012), liver (e.g., Cederbaum 2012), 
heart (e.g., Roerecke et al. 2011), 
pancreas (e.g., Andersen et al. 2008), 
kidneys (e.g., Schaeffner and Ritz 

2012), and lungs (e.g., Yeligar et al. 
2012). Mechanisms of these indirect 
effects of alcohol on the brain are likely 
mediated via soluble factors, such as 
ceramides (e.g., de la Monte et al. 2012). 

To evaluate alcohol’s central nervous 
system effects, researchers distinguish 
“uncomplicated alcoholism” (i.e.,  
alcohol use disorder [AUD]) from  
the various clinically diagnosable 
consequences of chronic alcohol 
consumption, including Wernicke’s 
encephalopathy (WE), Korsakoff’s 
syndrome (KS), hepatic encephalopathy 
(HE), central pontine myelinolysis 
(CPM), alcoholic cerebellar degenera-
tion (ACD), alcohol-related dementia 
(ARD), and Marchiafava-Bignami 

disease (MBD).1 The use of brain- 
imaging technology to evaluate clinically 
defined syndromes associated with 
chronic alcoholism, each with relatively 
unique radiological signatures (see table 1 
and figure 1), provides guideposts for 
studying brain alterations associated 
with uncomplicated alcoholism.

Approximately 7 percent of adults 
age 18 and older have an AUD 
(Substance Abuse and Mental Health 
Services Administration 2013). 

1 WE and KS are neurological disorders caused by thiamine  
deficiency. HE is a decline in brain function as a result of severe 
liver disease. CPM is a neurological disorder resulting from the 
destruction of the myelin layer that covers nerve cells in the pons. 
ACD occurs when neurons in the cerebellum are damaged due  
to alcohol use. MBD is a neurological disease associated with 
alcoholism, caused by damage to the corpus callosum. 
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Prevalence estimates of alcoholism- 
related syndromes are difficult to ascer-
tain. Incidence estimates often are based 
on postmortem findings. Postmortem 
evaluation indicates a prevalence of  
2 percent of WE in the general popu-
lation; however, as many as 12 to  
18 percent of alcoholics can have post-
mortem evidence of WE (Harper et al. 
1988; Riethdorf et al. 1991; Thomson 
et al. 2002). Based on observations 
that 80 to 85 percent of patients with 
WE can develop KS, the estimated 
prevalence of KS is 11 to 12 percent  
of the alcoholic population (Day et al. 
2013; Victor et al. 1971). Wernicke-
Korsakoff syndrome (WKS) is used to 
refer to the presence of both WE and 
KS because of the close relationship 
between the two disorders. 

Estimates of HE are derived from 
estimates of alcoholic cirrhosis, which 
can range from 8 percent to 20 percent 
(Bellentani et al. 1997; Mann et al. 
2003; Sorensen et al. 1984). Mild HE 
occurs in up to 80 percent of cirrhotic 
patients, and overt HE occurs in up to 
45 percent of cirrhotic patients (Bajaj 

2008; Poordad 2007). One study esti-
mated the incidence of CPM at 0.5 
percent among the general population 
(Newell and Kleinschmidt-DeMasters 
1996). However, prevalence is much 
higher (30 percent) among patients 
with liver transplants (Singh et al. 
1994). For ACD prevalence, reports 
based on postmortem evaluation range 
from as low as 0.4 percent to as high  
as 42 percent of alcoholics (Riethdorf 
et al. 1991; Scholz et al. 1986; Stork 
1967; Torvik and Torp 1986). Rates  
of ARD can depend on the setting, 
with facilities specializing in early 
identification and treatment of 
memory disorders reporting rates  
of 3 percent (McMurtray et al. 2006) 
and nursing homes reporting rates as 
high as 24 percent (Carlen et al. 1994; 
Oslin and Cary 2003; Ritchie and 
Villebrun 2008). Prevalence can also 
depend on the age of the population 
evaluated (i.e., higher prevalence of 
ARD is found in younger- onset [i.e., 
ages 45−64] dementia) (Draper et al. 
2011b; Harvey et al. 2003). MBD 
appears to be very rare, with only 

about 250 cases reported between 
1966 and 2001 (Helenius et al. 2001). 

Human studies offer a full depiction 
of the consequences of chronic alcohol 
exposure but are limited by ethical 
considerations. That is, rigorous exper-
imentation requires the ability to 
control for relevant variables such as 
the premorbid condition of the brain. 
The wide variation (or heterogeneity) 
of alcoholic populations examined 
with respect to genetic predisposition, 
age of onset, pattern of drinking, 
frequency of withdrawals, length of 
sobriety, nutritional, and hepatic status 
has hampered researcher attempts to 
isolate specific brain regions and mech-
anisms affected by alcohol, per se. This 
heterogeneity, and the complexity that 
it introduces, makes it difficult to thor-
oughly characterize the disorder. Animal 
models, in contrast to the indefinite 
natural course of alcohol use in humans, 
allow researchers to determine alcohol 
toxicity in a way that allows them to 
control for multiple genetic, environ-
mental, and alcohol consumption 
factors. Animal models permit the study 

Figure 1 Brain regions targeted by alcoholism-related diseases.
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of underlying mechanisms, enabling 
researchers to better interpret findings 
from human studies. 

On the other hand, animal models 
also have limitations. Species differences 
in brain structure and function—
among myriad other differences 
between humans and other animals—
can give inadequate information when 
animal data are applied to human 
disease. For example, mice models fail 
to mimic human inflammatory disease 
with respect to genomic responses 
(Seok et al. 2013), and corticosteroids 
disturb development in animals but 
not in humans (Needs and Brooks 
1985). Furthermore, researchers have 
hypothesized that the design, conduct, 
and analysis of a mainstay of animal 
experiments are questionable (Matthews 
2008) and rarely undergo meta-analytical 
review for consensus (Mignini and Khan 
2006; Peters et al. 2006; Pound et al. 
2004; Sandercock and Roberts 2002).

This article reports key findings in 
humans, from macrostructural find-
ings using magnetic resonance imaging 
(MRI), microstructural findings using 
diffusion tensor imaging (DTI), and 
metabolic findings from MR spectros-
copy (MRS). Studies of alcohol-related 
central nervous system disorders are 
used as a framework for findings in 
uncomplicated alcoholism. The article 
also examines studies of abstinence 

and relapse and current imaging stud-
ies of animal models of alcoholism  
and co-occurring brain disorders. The 
evidence suggests that human studies 
are necessary to identify and classify the 
brain systems modified by concomitants 
of alcoholism versus alcoholism, per se, 
and that animal models of alcoholism 
and its co-occurring brain disorders are 
essential for a mechanistic understand-
ing of vulnerable brain systems.

Structural MRI

Since the early 1980s, conventional 
structural MRI has allowed researchers 
to visualize the living human brain. 
Detailed images of the brain are possi-
ble in part because the different brain 
tissue types (i.e., gray matter, white 
matter, and cerebrospinal fluid [CSF]) 
contain different proportions of water 
(Rumboldt et al. 2010). With MRI, 
the brain can be viewed from bottom 
to top (axial), from front to back (cor-
onal), from left to right (sagittal), or at 
any oblique angle to these planes. This 
flexibility also enables greater accuracy 
in aligning images with internal land-
marks, an essential consideration for 
ensuring consistency of data from rep-
licate images from the same individual 
(Rohlfing 2006).

Structural MRI Findings in 
Alcoholism-Related Brain Diseases

Wernicke-Korsakoff Syndrome

WE occurs with chronic alcoholism 
and thiamine deficiency. If untreated, 
WE patients can develop KS, a severe 
neurological disorder characterized by 
anterograde amnesia (Harper 2006; 
Zahr et al. 2011). Malnutrition, vom-
iting, and diarrhea are common in 
chronic alcoholism and can contribute 
to thiamine deficiency (Fields et al. 
1994; Gloria et al. 1997; Morgan 
1982; Ross et al. 2012). Further, the 
gastrointestinal tract’s ability to absorb 
necessary quantities of thiamine is 
diminished in alcoholics (Hoyumpa 
1980; Thomson 2000), and the liver, 
which houses a large part of the body’s 
supplies of thiamine, may not be able 
to store thiamine in the same capacity 
if it is in a diseased state (Butterworth 
2009; Levy et al. 2002). Classical clinical 
signs of WE included visual, gait, and 
mental disturbances (Victor et al. 1971), 
but more recent assessments describe 
mild, moderate, and severe signs and 
symptoms including anorexia, loss of 
memory, and emotional changes 
(Thomson et al. 2008). An MRI image 
of acute WE (see figure 2) has symmet-
rical bright spots, or hyperintensities, 

Table 1 Radiological Signatures in Brain Imaging of Patients with Alcoholism-Related Syndromes

  Alcoholism-Related Syndrome Abbreviation Primary Targeted Region(s) Secondary Targeted Regions
Prevalence in  

Alcoholics (Percentage)

 Wernicke’s Encephalopathy  WE
Mammillary bodies, periaqueductal gray  
matter, dorsal medulla, tectal plates, olivary 
bodies, pons, tissue surrounding 3rd ventricle

         12–18

 Korsakoff’s Syndrome KS
Mammillary bodies, hippocampus, thalamus, 
orbitofrontal cortices

Cerebellum, pons          10–15

 Hepatic Encephalopathy HE Globus pallidus, substantia nigra Corticospinal tract, cortex          3–16

 Central Pontine Myelinolysis CPM Pons
Basal ganglia, thalamus, 
cerebral gray–white matter 
junctions

         < 0.5

 Alcoholic Cerebellar Degeneration  ACD Cerebellum          0.4–42

 Alcohol-Related Dementia ARD Frontal cortex          3–24

 Marchiafava-Bignami Disease MBD Corpus callosum Cortex          < 0.002
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clearly visible on T2-weighted images, 
and those created by fluid attenuation 
inversion recovery2 (FLAIR). The bright 
spots appear in the midbrain gray mat-
ter surrounding the cerebral aqueduct 
(i.e., periaqueductal gray matter), 
mammillary bodies, and tissue sur-
rounding the third ventricle3 (Lenz et 
al. 2002; Sullivan and Pfefferbaum 
2009). These findings agree with post-
mortem diagnosis of WE, often requiring 
evidence of lesions in the mammillary 
bodies and periventricular areas (e.g., 
Caine et al. 1997). In addition, observed 
MR hyperintense areas in WE include 
the thalamus, cerebellar vermis (Murata 
et al. 2001), dorsal medulla, tectal 
plates (Ha et al. 2012), olivary bodies, 
and dorsal pons (Liou et al. 2012). 
MRI analysis of KS patients compared  
 
 

2 Researchers use different MRI techniques to highlight different 
aspects of the brain. Techniques mentioned in this article include 
T1 weighted, T2 weighted, and FLAIR. 
 
3 The cerebral aqueduct and third ventricle are part of the brain’s 
ventricular system—a set of cavities in the brain that produce, 
transport, and remove cerebrospinal fluid. This system also 
includes the lateral ventricles and fourth ventricle. 

with unaffected research participants  
(i.e., nonalcoholic control subjects) 
revealed substantial volume shrinkage 
of the mammillary bodies in KS and a 
lesser but significant volume deficit in 
uncomplicated alcoholics (Sheedy et 
al. 1999; Sullivan et al. 1999b; but see 
Shear et al. 1996; Victor et al. 1989). 
In contrast with early MR studies sug-
gesting that KS affects the mammillary 
bodies while sparing the hippocampi 
(Squire et al. 1990), more recent work 
demonstrates hippocampal volume 
deficits in KS (Sullivan and Marsh 
2003). Other regions affected by KS 
are the thalamus, orbitofrontal cortex 
(Jernigan et al. 1991b), cerebellum, 
and pons (Zahr et al. 2009). 

Hepatic Encephalopathy (HE)

HE, occurring in acute or chronic liver 
disease, including acute liver failure and 
cirrhosis, is believed to arise, at least 
partially, from high levels of ammonia 
circulating in the blood. HE patients 
may appear confused and disoriented 
and have poor coordination (Prakash 
and Mullen 2010; Vaquero et al. 

2003). T1-weighted images of HE 
show bilateral, symmetrical, and 
high-intensity signals in basal ganglia 
structures, particularly the globus pal- 
lidus and substantia nigra (Binesh et  
al. 2006; Cordoba et al. 2002; Naegele 
et al. 2000; Pujol et al. 1996; Taylor-
Robinson et al. 1995) (see figure 3). 
T2-weighted FLAIR images show 
hyperintense signals along the cortico-
spinal tract and diffuse increases in 
white-matter signal intensities in the 
cerebral hemispheres (Rovira et al. 
2002, 2008). These in vivo MR  
features correspond with evidence  
of increased numbers of nonneuronal 
(i.e., glial) cells called astrocytes in 
basal ganglia and cerebral cortex  
of HE brains (Caine et al. 1997). 
Although discriminating features  
of WE and HE have been outlined, 
these diseases can be difficult to  
differentially diagnose and distinguish, 
because patients can appear to have 
similar symptoms and comparable 
MRI results, especially among alcoholics 
(Thorarinsson et al. 2011).

Figure 2 Wernick’s encephalopathy (WE). In acute WE, magnetic resonance imaging (MRI) can detect symmetrical, bilateral hyperintense foci, 
visible on T2-weighted and fluid attenuation inversion recovery (FLAIR) images, in periaqueductal gray matter, mammillary bodies, and tissue 
surrounding the third ventricle.
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Central Pontine Myelinolysis (CPM)
A significant proportion of CPM cases 
(Goebel and Herman-Ben Zur 1976; 
Messert et al. 1979) include a history 
of alcoholism. People with CPM, 
which is associated with electrolyte dis-
turbances and specifically with aggres-
sive correction of low sodium levels in 
the blood (i.e., hyponatraemia) (Chua 
et al. 2002), may have symptoms such 
as the inability to control facial move-
ments, decreased voluntary muscle 
control (i.e., ataxia), and acute changes 
in consciousness (Kumar et al. 2006; 
Pfister et al. 1985). Classically, CPM 
was characterized by the presence of  
a symmetric triangular or “bat-wing” 
lesion in the pons (DeWitt et al. 1984; 
Gerard et al. 1987), with hypointense 
T1-weighted (Kleinschmidt-Demasters 
et al. 2006; Martin and Young 1995) 
and hyperintense T2-weighted (Buis 
and Wijdicks 2002; Kleinschmidt-
Demasters et al. 2006; Pfister et al. 
1985; Martin and Young 1995) images  

(see figure 4) reflecting damage to the 
protective covering of nerve cells (i.e., 
demyelination) as noted postmortem 
(Goldman and Horoupian 1981). The 
term osmotic myelinolysis (e.g., Chua 
et al. 2002; de Souza and Desai 2012) 
was coined to reflect the fact that other 
brain regions (e.g., basal ganglia, thal-
ami, and cerebral gray–white matter 
junctions) are affected in CPM (e.g., 
Chen et al. 1996; Graff-Radford et al. 
2011; Hagiwara et al. 2008; Harlan  
et al. 1988; Price et al. 1987; Waragai 
and Satoh 1998), despite suggestions 
that pathology in these other regions 
may not strictly represent demyelin-
ation (Kleinschmidt-Demasters et al. 
2006; Kumar et al. 2006). Because a 
postmortem study of 112 autopsy 
cases of CPM patients reported that 
28 percent could also be diagnosed 
with WE (Goebel and Herman-Ben 
Zur 1976), pontine dysfunction 
should be regarded as a cardinal  
clinical sign of CPM.

Alcoholic Cerebellar Degeneration (ACD)
ACD patients most frequently display 
ataxia, although other symptoms can 
include uncontrollable and repetitive 
eye movement (i.e., nystagmus) and 
speech problems resulting from impaired 
muscle control (i.e., dysarthria) 
(Fitzpatrick et al. 2012). Neuroimaging 
in ACD demonstrates damage dispro-
portionately apparent in anterior supe-
rior portions of the cerebellar vermis 
(Sullivan et al. 2000a), with postmortem 
pathology indicating loss of cerebellar 
Purkinje cells (Feuerlein 1977). 

Alcohol-Related Dementia (ARD)

Alcoholic dementia, or ARD, a  
currently preferred term, remains a  
controversial diagnosis because of  
confounding syndromes such as WE 
and HE. Nevertheless, certain clini-
cally distinguishing features of ARD 
exist. It often occurs in socially isolated 
men at younger ages of onset (i.e., 

Figure 3 Hepatic encephalopathy (HE). T1-weighted imaging in HE reveals bilateral, symmetrical, high-intensity signals in basal ganglia structures, 
particularly the globus pallidus and substantia nigra, probably due to manganese deposition and T1 shortening. T2-weighted fluid attenuation 
inversion recovery (FLAIR) shows hyperintense signals along the corticospinal tract and diffuse hyperintense white matter signal in the 
cerebral hemispheres.
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younger than age 65) than other types 
of dementia (Draper et al. 2011a; 
Ridley et al. 2013); deficits in visuo-
spatial, executive, and memory func-
tions (Schmidt et al. 2005); slower 
progression compared with other types 
of dementia (Gupta and Warner 2008); 
and partial reversibility (Oslin and 
Cary 2003). ARD is considered a frontal 
dementia (Stewart 2006). In support 
of such categorization, forensic evalua-
tion of a sample of alcoholic brains 
noted a consistent pattern of synaptic 
loss in the superior laminae of the 
frontal cortex (i.e., Brodmann area 10), 
not related to liver disease (Brun and 
Andersson 2001).

Marchiafava-Bignami Disease (MBD)

MBD, a disease marked by mildly 
impaired mental status (e.g., confusion) 
and sometimes by dysarthria (Lee et al. 
2011) or ataxia (Arbelaez et al. 2003), 
is poorly understood but may be 
related to nutritional deficiencies  
in addition to chronic alcohol con-
sumption (Kawamura et al. 1985). 
Traditionally characterized by demye-
lination and necrosis of the corpus  
callosum, a number of reports identify 

cortical lesions in so-called MBD (Ihn 
et al. 2007; Johkura et al. 2005; Khaw 
and Heinrich 2006; Namekawa et al. 
2013; Tuntiyatorn and Laothamatas 
2008; Yoshizaki et al. 2010). Such 
data, however, represent single case 
studies and may reflect inaccurate MBD 
diagnoses. As observed in the pons in 
CPM, lesions (Clavier et al. 1986) 
appear hyperintense on T2-weighted 
images (Bano et al. 2009; Carrilho et 
al. 2013; Gambini et al. 2003) and 
hypointense on T1-weighted images 
(Bano et al. 2009; Carrilho et al. 2013; 
Kawamura et al. 1985) and often are 
located along the entire extent of the 
corpus callosum (Hillbom et al. 2014).

Given the aforementioned findings 
in clinically differential and diagnos-
able alcohol-related syndromes, the 
following section examines whether 
similar brain disorders also appear in 
alcoholics who do not manifest the full 
spectrum of symptoms present in these 
conditions. That is, how do the brains 
of uncomplicated alcoholics compare? 
Quantitative MRI has shown that  
relatively mild yet significant structural 
deficits characteristic of alcoholic 
syndromes can occur in uncompli-
cated alcoholics. 

Structural MRI Findings in 
Uncomplicated Alcoholism
Relative to findings in WKS, research 
demonstrates mild volume deficits in the 
mammillary bodies (Shear et al. 1996; 
Sullivan et al. 1999), hippocampi, and 
thalami in uncomplicated alcoholics 
compared with healthy controls (De 
Bellis et al. 2005; Chanraud et al. 
2007; Pitel et al. 2012; Sullivan 2003; 
van Holst et al. 2012). As shown in 
figure 5, these structures show a graded 
effect of volume deficits. That is, vol-
ume deficits are greatest in brains of 
subjects with KS (figure 5C) compared 
with brains of subjects with uncompli-
cated alcoholism (figure 5B) and brains 
unaffected by alcohol (figure 5A). 
Results suggest that mammillary-body 
damage is not prerequisite for the 
development of amnesia in alcoholism 
(Shear et al. 1996). MR findings also 
show hippocampal volume deficits in 
alcoholics compared with healthy con-
trols (Agartz et al. 1999; Beresford et 
al. 2006; Kurth et al. 2004; Laakso et 
al. 2000; Sullivan et al. 1995; Wilhelm 
et al. 2008). Hippocampal volume 
deficits in alcoholism are influenced by 
age (Sullivan et al. 1995), even though 

Figure 4 Central pontine myelinolysis (CPM) is visualized as a hypointense T1 (left, sagittal slice) or hyperintense T2 (middle, right axial slices are 
early and late echo images) symmetric triangle or “bat-wing” lesion in the pons.
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age-related decline is difficult to detect 
in cross-sectional studies (Pfefferbaum 
et al. 2013; Raz et al. 2010; Sullivan  
et al. 2005b). Although deficits in hip-
pocampal volume are not related to 
seizure incidence (Bleich et al. 2003; 
Sullivan et al. 1996), temporal-lobe 
white matter may be sensitive to alcohol- 
withdrawal seizures (Sullivan et al. 
1996). Hippocampal volume shrink-
age in alcoholism is attributed to loss 
of white matter and decreased axonal 
diameter (Harding et al. 1997). Glial 
cell loss (Korbo 1999) or reduced 
incorporation of newly formed neurons 
to the dentate gyrus (He et al. 2005; 
Nixon and Crews 2004), however,  
could also affect hippocampal volume 
in alcoholism.

Other regions selectively affected in 
WE and KS include the orbitofrontal 
cortices (KS), periaqueductal gray 
matter, and tissue surrounding the 
third ventricle (WE). Reports suggest 
that propensity to relapse following 
sobriety is related to pronounced atro-
phy in bilateral orbitofrontal cortices 
(Beck et al. 2012; Cardenas et al. 2011; 
Durazzo et al. 2011; also see Rando  
et al. 2011). The third ventricle (i.e., 
enlargement) is sensitive to resumption 
of chronic alcohol consumption 
(Pfefferbaum et al. 2001; Sullivan et al. 
2000b). There currently are no studies 
regarding periaqueductal gray-matter 
volume in uncomplicated alcoholics. 

Key regions affected in HE include 
the globus pallidus and substantia 

nigra. Volume effects on these two 
structures have not been reported in 
uncomplicated alcoholics; however, in 
children with fetal alcohol syndrome, 
globus pallidus volume is reduced in 
size compared with unaffected children 
(Nardelli et al. 2011). In contrast, 
other basal ganglia nodes of reward 
circuitry have been described as affected 
in uncomplicated alcoholism (Durazzo 
et al. 2011; Makris et al. 2008): MRI 
studies have revealed smaller volumes 
of caudate (Boutte et al. 2012), putamen 
(Jernigan et al. 1991a), amygdala (Fein 
et al. 2006), and nucleus accumbens, 
especially in more recently sober  
alcoholics compared with healthy 
controls (Sullivan et al. 2005a). Given 
the role of the amygdala in emotional 
regulation and behavioral control  
(for review, see McBride 2002), 
however, researchers have speculated 
that premorbid amygdala volume  
deficits put individuals at heightened 
risk for developing AUD (Benegal  
et al. 2007; Clarke et al. 2008; 
Kamarajan et al. 2006). 

CPM targets the pons and ACD 
affects the cerebellum. Total infraten-
torial volume (including pons, cerebellar 
hemispheres, vermis, fissures, cisterns, 
and fourth ventricle) is significantly 
smaller in uncomplicated alcoholics 
than control subjects. The volume  
of the pons (Chanraud et al. 2009b; 
Pfefferbaum et al. 2002b; Sullivan 2003) 
and cerebellum (i.e., hemispheres) 
(Boutte et al. 2012; Chanraud et al. 
2007, 2009a; De Bellis et al. 2005; 
Sullivan et al. 2000a,c) is smaller in 
uncomplicated alcoholics than in 
normal controls. Alcoholism-related 
volume deficits are also prevalent  
in gray and white matter (Shear et al.  
1996; Sullivan et al. 2003) of the  
cerebellar vermis (Antunez et al.  
1998; Piguet et al. 2006; Sullivan et  
al. 2006b, 2010), predominately in 
anterior superior but not posterior 
inferior regions (Sullivan et al. 2000a) 
(see figure 6).

The frontal cortex is notably damaged 
in ARD. With respect to cortical regions 
in uncomplicated alcoholism, various 
methods have shown significant, 

Figure 5 Brain volume deficits in a healthy control (A) compared with a subject with  
uncomplicated alcoholism (B) and a subject with Korsakoff’s syndrome (KS) 
(C). These structural MRIs show a graded effect of volume deficits, notable in  
the ventricular and sulcal cerebrospinal fluid (CSF)–filled spaces: subjects with  
KS > subjects with uncomplicated alcoholism > normal controls.
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widespread shrinkage of both cortical 
gray and white matter with corre-
sponding increases in CSF-filled spaces 
(Cardenas et al. 2007; Jang et al. 2007; 
Jernigan et al. 1991a; Mechtcheriakov 
et al. 2007; Pfefferbaum 1992). In 
particular, older (older than age 50)  
but not younger adult alcoholics show 
disproportionate deficits in both gray- 
and white-matter cortical volume,  
especially in the frontal lobes, when 
volumes are statistically adjusted for 
brain tissue decline associated with 
normal aging (Cardenas et al. 2005, 
2007; Pfefferbaum et al. 1997). This is 
the case even in comparisons made in 
groups selected on alcohol consumption, 
where older alcoholics have consumed 
equivalent amounts over their lifetime 
as younger alcoholics. 

Thinning of the corpus callosum 
occurs in uncomplicated alcoholics 
and is more prominent in the anterior 
than posterior regions (Estruch et  
al. 1997; Pfefferbaum et al. 1996).  
As with WE and KS, evidence for 
MBD-like pathology in uncomplicated 
alcoholism raises the possibility that 
brain damage occurs on a continuum. 
The following section examines how 
brain structures and function respond 
when drinking stops. 

Structural MRI Findings in 
Recovery From Alcoholism
Longitudinal MRI investigations show 
that the ventricles become smaller  
following weeks (Schroth et al. 1988; 
Zipursky et al. 1989) or months (Shear 
et al. 1994) of drinking cessation. 
Reduction of lateral ventricles precedes 
reduction of third-ventricular volume 
(Pfefferbaum et al. 1995) and may be 
related to improvements in hematocrit, 
hemoglobin, and red blood cell counts 
(Pfefferbaum et al. 2004). The follow-
ing brain structures increase in volume 
in response to abstinence: the entire 
cerebral cortex (Liu et al. 2000); tem-
poral, insular, and anterior cingulate 
cortices (Cardenas et al. 2007); amyg-
dala (Wrase et al. 2008) (a finding that 
would argue against a premorbid vol-
ume deficit); thalamus (Cardenas et al. 

2007); hippocampus (Liu et al. 2000, 
Wrase et al. 2008); brainstem; and  
cerebellar cortex (Cardenas et al. 2007; 
Liu et al. 2000). 

Sober alcoholics reveal several associ-
ations between brain-volume gain, as 
determined by MRI, and improvement 
in neuropsychological test performance: 
Reduced lateral-ventricle volume is 
related to improved memory perfor-
mance (Rosenbloom et al. 2007), 
reduced third-ventricle volume is related 
to improved nonverbal short-term 
memory performance (Sullivan et al. 
2000b), and reduced fourth-ventricle 
volume is related to improvement  
in measures of ataxia (Rosenbloom  
et al. 2007). 

The brain’s capacity to return to 
“normal” following long-term sobriety 
is unknown. Short-term (6 weeks) 
abstinence seems sufficient to observe 
some brain-volume recovery but does 
not result in equivalent brain volumes 
between recovering chronic alcoholics 
and healthy controls (Mann et al. 
2005). It is difficult to determine 
whether recovery is complete. Aging is 
a factor. That is, older alcoholics exhibit 
reduced capacity for recovery compared 
with younger alcoholics (Fein et al. 
1990; Munro et al. 2000; Reed et  
al. 1992; Rourke and Grant 1999). 
Longer periods of abstinence may be 
required for follow-up investigations. 
Some brain damage, such as neuronal 
loss (Harper 2007), may be irrevers-
ible, even with extended abstinence.

Despite evidence for recovery of 
brain volume with abstinence, the 
mechanisms accounting for recovery 
remain unclear. One hypothesis, brain 
rehydration, was not supported by 
early human research studies (Schroth 
et al. 1988). An alternative explanation 
suggests that new neurons are created 
(i.e., neurogenesis) (e.g., Mandyam 
and Koob 2012): It is unlikely, however, 
that enough neurons could be made  
to replace the volume loss observed in 
chronic alcoholism. Nor is it clear that 
new neurons can migrate from neuro-
genic zones to distant areas of volume 
loss (Rakic 2002). On the other hand, 
adequate volume recovery may be 

explained by white-matter regeneration, 
because glial cells (i.e., oligodendro- 
ctyes) have the capacity to repair myelin 
and remyelinate neurons (Kipp et al. 
2012), and oligodendrocyte progenitor 
cells have the potential to migrate long 
distances (Tirotta et al. 2010). Indeed, 
alcoholics who relapse have decreased 
white matter (Pfefferbaum et al. 1995), 
whereas continued abstinence is associ-
ated with increased white matter (Shear 
et al. 1994), notably in the corpus 
callosum and subcortical white matter 
(Cardenas et al. 2007). 

Turning from studies with humans 
to animals, the following section examines 
imaging studies in models of alcohol-
ism and related disorders.

Figure 6 Cerebellar volume deficits in 
uncomplicated alcoholism. 
Midsagittal view of the brain, 
showing smaller volume of the 
anterior superior vermis of the 
cerebellum in an alcoholic 
man (bottom) compared with an 
age-matched control man (top).
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Using Animal Models and 
Structural MRI to Study 
Alcoholism-Related Brain Disease

WE
There are two experimental approaches 
to model WE in rodents. The slower 
approach uses a thiamine-deficient diet 
(i.e., feeding with a thiamine-deficient 
chow), which can take 3–4 weeks  
to produce symptoms. Behavioral 
symptoms can be achieved in ~2 weeks 
using a combination of a thiamine- 
deficient chow and intraperitoneal 
(i.p.) administration of a thiamine 
pyrophosphokinase inhibitor such as 
pyrithiamine (Hazell and Butterworth 
2009). Both models result in symptoms 
that mimic those observed in humans 
with WE (Pitkin and Savage 2001). 
Structural MRI findings in thiamine- 
deficient animals show similar patterns 
of brain changes, including hyperin-
tense signals observed on T2-weighted 
images in thalamus, collicular bodies 
(Dror et al. 2010; Jordan et al. 1998; 
Pfefferbaum et al. 2007; Zahr et al. 
2014a), hypothalamus, hippocampus 
(Jordan et al. 1998), mammillary bodies 
(Pfefferbaum et al. 2007), corpus  
callosum, and superior cerebellar 
peduncles (Dror et al. 2010). Thiamine 
deficiency may cause degeneration 
through neuroinflammatory mechanisms 
(Abbott 2000; Hazell and Butterworth 
2009). In rats, inflammatory genes 
were highly expressed in vulnerable 
brain regions (Vemuganti et al. 2006). 
MRI in animal models permits further 
probing of the effects of thiamine defi-
ciency on the brain and can be used  
to determine susceptible brain regions 
as a function of time of insult (Dror et 
al. 2010; Zahr et al. 2014a) as well as 
relationships between neuroinflamma-
tory markers and brain insult (Zahr et 
al. 2014a). Such studies have also been 
used to confirm a mechanism of toxicity 
suspected based on research in humans 
(e.g., Harper 1980; Koguchi et al. 2004; 
Navarro et al. 2008): that glucose 
loading in a thiamine-deficient state 

can precipitate WE (Jordan et al. 
1998; Zahr et al. 2014a), likely involv-
ing a breakdown of the blood–brain 
barrier (Nixon et al. 2008; Zelaya et al. 
1995). In animals, postmortem followup 
can be used to confirm and extend in 
vivo findings. For example, electron 
microscopy showed a higher percent-
age of small fibers and myelin thinning 
in the corpus callosa of thiamine- 
deficient animals relative to controls 
(He et al. 2007). 

Research with animals demonstrates 
that thiamine deficiency impairs several 
biochemical pathways requiring the 
thiamine derivative thiamine pyro-
phosphate (e.g., transketolase, pyruvate 
dehydrogenase, and α-ketoacid dehy-
drogenase) (Thomson et al. 2012), 
thereby interfering with carbohydrate 
metabolism (for energy production), 
lipid metabolism (for production and 
maintenance of myelin), and amino 
acid metabolism (for production of 
glucose-derived neurotransmitters; for 
example, glutamate and γ-aminobutyric 
acid [GABA]) (Sechi and Serra 2007; 
Vetreno et al. 2012). Consequently, the 
function of essential thiamine-requiring 
enzymes in the brain (e.g., transketolase, 
pyruvate dehydrogenase, and α-keto-
acid dehydrogenase) is compromised, 
leading to oxidative stress, cellular 
energy impairment, and eventually 
neuronal loss (Thomson et al. 2012).

Evidence also shows that thiamine 
deficiency alters norepinephrine,  
dopamine (Mousseau et al. 1996), 
serotonin (Nakagawasai et al. 2007), 
and histamine (Langlais et al. 2002; 
McRee et al. 2000) synthesis and 
catabolism pathways. Thiamine defi-
ciency may target focal brain areas 
such as the thalamus because, relative 
to other brain structures, it has lower 
levels of monocarboxylic acid transport-
ers and acetyl-CoA-synthetase. This 
makes these areas less capable of gener-
ating energy from acetate (Qin and 
Crews 2014), which is a potential source 
of cellular energy in place of glucose  
in alcoholism (Volkow et al. 2013).

Current rodent models to study HE 
include models of acute and chronic 
liver failure (Butterworth et al. 2009; 

Diaz-Gomez et al. 2011). According 
to the International Society for 
Hepatic Encephalopathy, however,  
“At this time, there are no satisfactory 
animal models of Type C HE resulting 
from end-stage alcoholic liver disease 
or viral hepatitis, the most common 
etiologies encountered in patients” 
(Butterworth et al. 2009, p. 783). In 
addition, no MR-imaging studies to 
date have used rodent models of HE. 
Imaging studies in cats, dogs, and 
monkeys (Moon et al. 2012; Torisu et 
al. 2005; Zhou et al. 2012) typically 
recapitulate the human condition, 
showing nonspecific sulcal widening 
and hyperintensities in lentiform 
nuclei (i.e., putamen and globus palli-
dus of the basal ganglia) (Torisu et  
al. 2005; Zhou et al. 2012). Animal 
models of HE have been used to evalu-
ate potential mechanisms of pathology, 
such as the contribution of excess 
ammonia in the blood (i.e., hyper- 
ammonemia) (Cauli et al. 2014) or 
lactate (Bosoi et al. 2014). Animal 
models of HE have also been used to 
explore treatment strategies for HE 
(e.g., hypothermia) (Barba et al. 2008).

CPM
Using a rat model of CPM to study 
white-matter degeneration, it was 
found that blood–brain barrier break-
down, detected with MRI, was associ-
ated with a higher risk of developing 
demyelination, as detected using post-
mortem histopathology (Adler et al. 
2000). This study demonstrated that 
blood–brain barrier disruption exposes 
oligodendrocytes to substances nor-
mally excluded from the brain. This 
supports hypotheses from human 
postmortem studies suggesting that 
damage to the pons may be linked  
to reduced blood flow, as indicated  
by findings that basilar artery architec-
ture is altered in CPM (De Reuck et 
al. 1975). 

Although there are no known studies 
using structural MRI in animal models 
of ACD, ARD, or MBD, the following 
section examines animal studies in 
uncomplicated alcoholism.
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Structural MRI Findings  
in Animal Models of 
Uncomplicated Alcoholism 

An important initial report in the 
rodent MRI literature was the demon-
stration that brain growth continues 
beyond what would be considered 
adulthood in rats bred to prefer alcohol 
(i.e., alcohol-preferring rats, or P rats). 
Indeed, whole-brain volume in such 
rats continued to grow until approxi-
mately postnatal day 450 (Sullivan et 
al. 2006a), well past adulthood, which 
is typically considered as postnatal day 
90 (Bell et al. 2013). Baseline studies 
(in the absence of alcohol [i.e., EtOH] 
exposure) also suggest that brains of 
alcohol-preferring rats are different rel-
ative to their wild-type counterparts, 
including reduced gray-matter volume 
in thalamus, ventral tegmental area, 
and insular and cingulate cortices 
(Gozzi et al. 2013).

One of the most consistent findings 
in alcohol-exposed rodents, ventricular 
enlargement, varies with timing and 
method of alcohol exposure. It is far 
more pronounced in rats achieving 
average blood alcohol levels (BALs)  
of 250 mg/dL in just 4 days of invol-
untary binge-type administration of 
EtOH (Zahr et al. 2010, 2013, 2014b) 
than in rats achieving average BALs of 
200 mg/dL over 24 weeks using vapor 
EtOH exposure (Pfefferbaum et al. 
2008) or P rats gradually achieving 
average BALs of 125 mg/dL with 
voluntary EtOH consumption 
(Pfefferbaum et al. 2006a), where only 
modest ventricular enlargement was 
noted (cf., Fadda and Rossetti 1998; 
Nixon 2006). Even repeated binge 
exposures (i.e., 5 cycles of 4 days of 
intragastric binge EtOH exposure with 
1 week abstinence in between), do not 
result in persistent effects on the brain 
detectable with MRI (Zahr et al. 2015). 
Although ventricular size increases 
with each binge EtOH exposure, there 
is rapid recovery during each week of 
abstinence (Zahr et al. 2015). Such 
studies suggest that EtOH alone, at 
least in the exposure protocols evaluated 
with MRI, does not result in the 

characteristics observed in human 
alcoholics. Conversely, rats exposed to 
vaporized EtOH during adolescence 
are reported to show persistent effects 
(i.e., ventricular enlargement and  
deficits in hippocampal volume) into 
adulthood (Ehlers et al. 2013; Gass  
et al. 2014). Mice exposed to EtOH 
during adolescence are similarly 
purported to exhibit long-lasting 
regional brain-volume deficits in the 
olfactory bulb and basal forebrain 
(Coleman et al. 2011, 2014). These 
results suggest that the adolescent 
rodent brain may be more vulnerable 
to enduring toxic effects of EtOH than 
the adult rodent brain. 

In monkeys trained to voluntarily 
consume alcohol, those that drank at 
least 3 g/kg EtOH per day for 15 
months showed significant brain-volume 
shrinkage in the cerebral cortices 
(Kroenke et al. 2014). Because these 
animals were well nourished, these 
results suggest a direct relationship 
between oral EtOH intake and measures 
of decreased brain gray-matter volume.

Microstructural DTI

A number of sources provide extensive 
descriptions of the principles of DTI 
(Basser and Jones 2002; Chien et al. 
1990; Gerig et al. 2005; Jones 2005; 
LeBihan 2001, 2003; Pierpaoli et al. 
1996; Poupon et al. 1999; Sullivan 
and Pfefferbaum 2011). Briefly, DTI 
takes advantage of the fact that MR 
images of the brain are predominantly 
maps of water protons with contrast 
created by their immediate environ-
ment and their motility. In regions 
with few or no constraints imposed by 
physical boundaries, such as CSF in 
the ventricles, water movement is ran-
dom and uniform in every direction 
and is therefore isotropic. In contrast 
to CSF, the path of a water molecule 
along a white-matter fiber is constrained 
by physical boundaries such as the 
axon sheath, causing greater move-
ment along the long axis of the fiber 
than across it. This movement is called 
anisotropic; diffusion along the long 

axis of a fiber (axial or longitudinal dif-
fusion) is greater than diffusion across 
the fiber (radial or transverse diffusion) 
(Song et al. 2002).

DTI findings are described in terms 
of diffusion. The magnitude of diffusion, 
referred to as mean diffusivity (MD)  
or the apparent diffusion coefficient 
(ADC), is calculated mathematically. 
Increased MD corresponds to white- 
matter damage. Fractional anisotropy 
(FA), ranging between 0 and 1, reflects 
axonal integrity, with lower integrity 
reflected by FA values closer to 0. 
Thus, disruption of white-matter 
microstructure detectable with DTI  
can reflect compromised myelin,  
cytoskeletal structure, or axonal density 
(Basser 1995; Basser and Pierpaoli 
1996; Spielman et al. 1996). 

Several approaches have been used 
to quantify DTI metrics. One of the 
more desirable approaches is the use  
of quantitative fiber tracking, which is 
able to evaluate fibers along their entire 
length and can thus detect compromised 
white matter. This technique can be 
used to depict selective commissures 
(e.g., corpus callosum), projection 
fibers, and association fibers. 

DTI Findings in Alcoholism-Related 
Brain Disorders 
In one study, DTI in alcoholics with 
(n = 7) and without (n = 20) WKS 
showed FA deficits in the fornix  
and cingulum bundle of the Papez  
or medial limbic circuit, measured 
using tract-based spatial statistics 
(TBSS). These FA effects were greater 
in alcoholics with WKS relative to 
those without it (Segobin et al. 2015). 
The number of tracts in the fornix 
appears to be reduced only in WKS 
patients (Nahum et al. 2015).

Studies of people who have alcohol- 
related cirrhosis with HE have reported 
elevated MD in several white-matter 
bundles, including the corpus callo-
sum, internal capsule, and frontal 
white matter (Kale et al. 2006), and 
effects on both FA and MD of occipi-
tal white matter (Kumar et al. 2008). 
HE caused by alcoholism compared 
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with other forms of HE (e.g., as a 
result of viral infection or primary bili-
ary cirrhosis) appears to have different 
effects on DTI parameters (Miese et al. 
2006), with more widespread changes 
in FA and MD in alcoholic relative  
to nonalcoholic cirrhosis (Ahluwalia et 
al. 2015). When researchers induced 
hyperammonemia in cirrhotic patients, 
an increase in ADC in brain white 
matter was observed, supporting excess 
ammonia in the blood as a mechanism 
driving cerebral edema (Mardini et  
al. 2011).

DTI showed elevated MD in the 
middle cerebellar peduncles with no 
effects on corticospinal tracts in a 
study participant with CPM relative to 
three healthy comparison participants 
(Min et al. 2012; Nair et al. 2012). 

The largest DTI study of MBD to 
date included six study participants, 
five with a history of chronic alcoholism. 
All six showed hyperintense signals on 
diffusion images and low ADC of the 
corpus callosum. Researchers observed 
cortical lesions in frontoparietal regions 
in three of six study participants with 
the poorest outcomes (Menegon et al. 
2005). Remaining DTI studies of MBD 
were case studies (e.g., Tuntiyatorn and 
Laothamatas 2008) showing low ADC 
along the entire corpus callosum (Bano 
et al. 2009; Wenz et al. 2014), with FA 
values diminishing progressively from 
front to back (Pacheco et al. 2014; Sair 
et al. 2006). No known DTI studies 
have been conducted in patients with 
ACD or ARD.

DTI Findings in Uncomplicated 
Alcoholism
DTI has revealed microstructural dam-
age related to alcoholism in cerebral 
areas that appear intact in structural 
MRI analyses (e.g., Pfefferbaum and 
Sullivan 2002; Pfefferbaum et al. 
2006b; Sullivan et al. 2003). Corpus 
callosum findings in uncomplicated 
alcoholics are common and, as observed 
for MBD, show greater anterior than 
posterior effects (e.g., Arnone et al. 
2006; Konrad et al. 2012; Liu et al. 
2010; Pitel et al. 2010; Schulte et al. 

2005). Quantitative fiber tracking  
has demonstrated greater FA deficits  
in anterior than in posterior fibers  
of supratentorial and infratentorial 
white-matter bundles in alcoholics 
compared with healthy controls, as  
well as low FA in tracts of the corpus 
callosum, centrum semiovale, internal 
and external capsules, fornix, superior 
cingulate, and longitudinal fasciculi 
(Fortier et al. 2014; Müller-Oehring  
et al. 2009; Pfefferbaum and Sullivan 
2005; Pfefferbaum et al. 2000, 2002a, 
2009a; Trivedi et al. 2013). Fronto-
limbic (Harris et al. 2008; Monnig et 
al. 2013), fronto-parietal (Maksimovskiy 
et al. 2014), fronto-occipital (Bagga  
et al. 2014), fronto-cerebellar (Sullivan 
and Pfefferbaum 2005), cortico-striatal 
(Yeh et al. 2009), and cortico-pontine 
(Chanraud et al. 2009b) fibers are  
also affected in alcoholics relative  
to healthy controls. 

Studies have also examined DTI- 
function relationships in alcoholism. 
FA in anterior cingulate and motor 
areas correlates with executive and 
psychomotor performance (Konrad et 
al. 2012), FA in the splenium correlates 
with working memory (Pfefferbaum  
et al. 2000), and FA in several regions 
(corpus callosum, parietal, occipital, 
and frontal white-matter) correlates 
with performance on the Iowa 
Gambling Task (Zorlu et al. 2013).  
A double dissociation was found show-
ing that higher diffusivity in sensory- 
motor and parietal bundles was 
associated with poorer balance but not 
psychomotor speed, whereas higher 
diffusivity in prefrontal and temporal 
bundles was associated with slower 
psychomotor speed but not balance 
(Pfefferbaum et al. 2010). DTI changes 
in multiple supratentorial and infra-
tentorial fiber systems in alcoholics 
correlated with impairment in speeded 
performance and postural stability 
(Pfefferbaum et al. 2009b), frontal 
fiber integrity connecting left and  
right hemispheres predicted perfor-
mance on a coordinated psychomotor 
task (Rosenbloom et al. 2008), and 
number of reconstructed fibers running 
between the pons and the midbrain 

was related to cognitive flexibility 
performance (Chanraud et al. 2009b). 
Gray-matter diffusivity in the hippo-
campus, which is lower in alcoholics 
than in healthy controls, is related to 
episodic memory impairment 
(Chanraud et al. 2009a). 

DTI Findings in Recovery from 
Alcoholism
Similar to structural MRI findings 
demonstrating pronounced tissue- 
volume shrinkage of orbitofrontal  
cortices in abstinent alcoholics who 
were likely to resume drinking (e.g., 
Beck et al. 2012; Cardenas et al. 2011; 
Durazzo et al. 2011), DTI identified 
alcoholic individuals more likely to 
resume drinking 6 months following 
initial evaluation based on lower FA 
and higher diffusivity in frontal white 
matter at baseline (Sorg et al. 2012). 
Increases in FA and decreases in diffu-
sivity have been interpreted as evidence 
for white-matter recovery with absti-
nence. Studies have shown recovery in 
corpus callosum at 1 year compared 
with 2 weeks of abstinence (Alhassoon 
et al. 2012) and in frontal white mat-
ter at 1 month compared with 1 week 
of abstinence, at least in nonsmoking, 
sober alcoholics (Gazdzinski et al. 
2010). Other reports suggest that 
some white-matter impairments persist 
after 6 to 30 months of recovery in 
alcoholics relative to healthy controls 
(Zorlu et al. 2014). In a seminal longi-
tudinal study of 47 alcoholic and  
56 healthy controls study participants, 
Pfefferbaum and colleagues (2014) 
reported that, despite abnormally low 
FA, age trajectories of the alcoholics 
who abstained were positive and pro-
gressing toward normality, whereas 
those of the relapsing alcoholics and 
control subjects were negative.

DTI Findings in Animal Models  
of WE
DTI data have been collected in 
animal models of WE but not in  
other concomitants of alcoholism. 
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In the study in which WE was induced 
by thiamine deficiency, animals were 
imaged at baseline, presymptomatic 
stage (day 10), symptomatic stage 
(days 12 and 14), and after recovery 
on days 31 and 87. A decrease in FA  
in the inferior colliculi was first noted 
on day 10 but showed recovery on day 
87. On the other hand, the FA decrease 
in the thalamus first noted on day 12 
persisted through day 87 (Dror et al. 
2010). This model was also used in a 
pharmacological DTI study in which 
animals were exposed to rasagiline, a 
selective monamine oxidase B inhibitor, 
as a potential protective agent against 
thiamine-deficiency–induced brain 
damage (Dror et al. 2014). In addition 
to reducing ventricular enlargement, 
rasagiline appeared to ameliorate the 
effects of thiamine deficiency on the 
FA decrease in the thalamus (Dror et 
al. 2014). Histopathology showed that 
treatment with rasagiline reduced the 
lesions in thalamus and colliculi 
observed in the thiamine-deficient 
brain (Eliash et al. 2009). Rasagiline 
has not been evaluated in human 
patients with WE. 

DTI Findings in Animal Models  
of Uncomplicated Alcoholism 
Adolescent animals exposed to inter-
mittent EtOH and evaluated postmor-
tem showed no effects on FA but 
reduced axial diffusivity (hippocampus, 
cortex, and cerebellum), reduced radial 
diffusivity (hippocampus and cortex), 
and reduced MD (cerebellum and cor-
pus callosum) in several brain regions 
(Vetreno et al. 2016). Adult rats exposed 
to a single dose of EtOH showed a 
slight and transient reduction, relative 
to unaffected rats, in ADC in brain-
stem (Kong et al. 2013), frontal lobe, 
hippocampus, thalamus, and cerebel-
lum (Liu et al. 2014). These findings 
were interpreted as reflecting the devel-
opment of cytotoxic brain edema, as 
histological analysis showed cell swell-
ing and narrowed extracellular spacing 
(Kong et al. 2013).

Whereas chronic exposure to vapor-
ized EtOH did not result in detectable 

effects on FA or MD, binge EtOH 
exposure resulted in transient decreases 
in FA and transient increases in MD 
(Pfefferbaum et al. 2015). Together, 
these results suggest that DTI can 
detect acute and subchronic effects on 
the brain, but that chronic exposure to 
EtOH can result in brain adaptations 
such that effects on FA and MD are no 
longer discernable.

Magnetic Resonance 
Spectroscopy 

Although MRI primarily depicts the 
distribution of water protons, similar 
technology can also be used to obtain 
information about chemical constitu-
ents other than water, primarily due to 
a small frequency shift, or “chemical 
shift,” relative to the water signal. The 
acquisition of MR-detectable signals 
other than those of water and fat is 
referred to as MRS and is an in vivo 
application of traditional laboratory- 
based NMR spectroscopy. 

MRS reveals information about 
several biochemicals, or metabolites,  
in the brain. The largest signals arise 
from N-acetylaspartate (NAA), 
creatine and phosphocreatine (i.e., 
total creatine [tCr]), and choline- 
containing compounds (Cho). Signals 
from the combined resonances of 
glutamate (Glu) and glutamine (Gln) 
(i.e., Glx) are also sometimes reported, 
as are myo-inositiol (mI) and lactate 
(lac). Signals from Glu and GABA  
can also be detected under certain 
conditions. 

MRI and Signals for Four  
Prominent Metabolites

NAA 

The predominant in vivo proton signal 
is NAA, with contributions from  
other N-acetyl compounds, especially 
N-acetyl aspartyl glutamate. NAA is 
found almost exclusively in neurons 
(Petroff et al. 1995; Urenjak et al. 1992, 
1993) and, thus, is considered a mea-

sure of neuronal integrity. Postmortem 
(Cooper 1972; Koller et al. 1984; 
Nadler and Cooper 1972) and MRS 
(Kwo-On-Yuen et al. 1994; Petroff et 
al. 1995) studies have shown NAA lev-
els to be higher in gray than in white 
matter in healthy study participants,  
as have in vivo studies (Doyle et al. 
1995; Lim and Spielman 1997;  
Lim et al. 1998; Moyher et al. 1995; 
Narayana et al. 1989; Pouwels and 
Frahm 1998; Schuff et al. 1999;  
Wang et al. 1998). 

tCr

The tCr signal, generated by creatine 
and phosphocreatine, is influenced by 
the state of high-energy phosphate 
metabolism (Tedeschi et al. 1995). In 
spectroscopy studies, it often is used  
as a reference for other peaks based on 
the incorrect assumption that its con-
centration is relatively constant (cf. 
Zahr et al. 2008, 2009, 2014b).  

Cho

The in vivo MRS-visible Cho peak is 
generated primarily by water-soluble 
choline-containing compounds (free 
choline, phosphocholine, and glycero-
phosphocholine) (Barker et al. 1994) 
and is associated with cell-membrane 
synthesis and turnover. The Cho reso-
nance also provides an index of cellular 
density in brain tumors (Gupta et 
 al. 1999) and may be a marker of 
increases in glial density with age and 
disease. MRS-measured Cho concen-
tration is higher in white than gray 
matter (Pfefferbaum et al. 1999) and 
increases with normal aging (Chang  
et al. 1996; Kreis et al. 1993; Moats  
et al. 1994; Pfefferbaum et al. 1999; 
Soher et al. 1996). 

mI

Myo-inositiol is present in glial but 
not neuronal cell cultures (Brand et  
al. 1993; Petroff et al. 1995) and plays 
a role in maintaining cell volume 
(Ernst et al. 1997; Lien et al. 1990). 
The concentration of mI is higher in 
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gray than in white matter (Michaelis  
et al. 1993; Pouwels and Frahm 1998).

Figure 7 shows a graph of MR spec-
tra from the thalamus of a 55-year-old 
nonalcoholic woman. The major 
metabolites are color coded.

MRS Findings in Alcoholism-
Related Brain Disorders 
As with the other imaging modalities, 
MRS reports of WE are primarily case 
studies. For example, a Japanese man 
who had consumed alcohol for 50 
years and had eaten poorly for several 
days as a result of a cold presented 
with gait disturbances and incoherent 
speech. MRS before and after thiamine 
treatment found an initial low level  
of NAA/tCr in the thalamus, which 
appeared to increase with thiamine 
replacement. NAA/tCr levels in the 
cerebellum did not increase, although 
a lactate peak initially present in the 
cerebellum resolved (Murata et al. 
2001). MRS conducted in two patients 
with non–alcohol-related thiamine 
deficiency (i.e., caused by gastric and 

pancreatic cancer) compared with five 
healthy study participants showed similar 
results: relatively low NAA/tCr levels 
in the thalamus resolved after treatment 
with thiamine (Mascalchi et al. 2002). 

In a variety of brain regions, MRS 
findings in alcohol-related cirrhosis and 
HE are remarkably consistent and 
comparable with findings in nonalcoholic 
HE (e.g., Cordoba et al. 2001; Gupta 
et al. 1993; Häussinger et al. 1994), 
showing lower levels of Cho/tCr and 
mI/tCr and higher levels of Gln/tCr 
(Ahluwalia et al. 2015; Binesh et al. 
2006; Chavarria et al. 2013; Jain et al. 
2013; Kreis et al. 1992; Laubenberger 
et al. 1997; Miese et al. 2006; Pujol et 
al. 1996; Singhal et al. 2010; Taylor-
Robinson et al. 1994, 1999; Thomas 
et al. 1998). Levels of mI and Cho  
are lowest and Glx highest in patients 
with HE (Geissler et al. 1997; Lee et 
al. 1999; Poveda et al. 2010; Ross et al. 
1994; Tarasow et al. 2003). 

Mild swelling of astrocytes is proposed 
as the key event in the pathogenesis  
of HE (e.g., Takahashi et al. 1991).  
In cirrhosis, elevated blood level of 

ammonia is thought to result in 
elevated brain ammonia, which can  
be toxic (Weissenborn et al. 2007).  
It often has been proposed that the 
brain’s response to elevated ammonia 
levels is to combine ammonia and 
glutamate to make glutamine using 
glutamine synthetase, found primarily 
in astrocytes (Yamamoto et al. 1987). 
Thus, brain swelling in cirrhosis is 
thought to reflect an increase in astro-
cytic glutamine formation. The 
decrease in mI is thought to be a 
compensatory mechanism to counter-
balance the osmotic effect of cerebral 
glutamine accumulation (Balata et al. 
2003; Mardini et al. 2011). Although 
some articles claim to measure in vivo 
glutamine (e.g., Binesh et al. 2006; 
Chavarria et al. 2013; Jain et al. 2013; 
Kreis et al. 1992; McConnell et al. 
1995), it is unlikely that the MRS 
method used in these cases permitted 
the separate detection of glutamate 
and glutamine, which are strongly 
coupled and difficult to detect inde-
pendently, even with very short echo 
times (Adalsteinsson et al. 2002). A 
single study measured GABA levels  
in five alcoholics without HE and five 
study participants with both alcohol 
and non–alcohol-related HE. GABA 
levels were lower in the two patient 
groups relative to 10 comparison 
participants (Behar et al. 1999).

In the only report of MRS conducted 
in a case of alcoholism-associated 
CPM, elevated Cho/tCr was found 
and interpreted as reflecting edema or 
demyelination in a 53-year-old man 
with gait disturbances and hearing loss 
(Nomoto et al. 2004). In 12 patients 
with chronic hyponatremia (nonalcohol 
etiology), MRS showed reduced Cho 
and mI relative to unaffected study 
participants, reflecting osmolyte 
disturbances (Videen et al. 1995). 

Research also has found compro-
mised NAA/tCr levels in patients  
with cerebellar degeneration (Tedeschi 
et al. 1996; Terakawa et al. 1999).  
Two MRS case studies of MBD 
showed reduced NAA/tCr and 
elevated Cho/tCr in corpus callosum 
splenium (Gambini et al. 2003; 

Figure 7 Magnetic resonance spectroscopy spectra from the thalamus of a 55-year-old  
nonalcoholic control woman, with a gaussian fit of the major metabolites that has 
been color coded.
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Tuntiyatorn and Laothamatas 2008), 
findings consistent with demyelination 
(elevated Cho) and axonal injury 
(reduced NAA). 

MRS Findings in Uncomplicated 
Alcoholism
Most MRS studies show lower levels  
of NAA in recently sober alcoholics 
relative to healthy controls in several 
brain regions, including frontal areas 
(Bendszus et al. 2001; Durazzo et  
al. 2004, 2010; Fein et al. 1994; 
Jagannathan et al. 1996; Meyerhoff  
et al. 2004; Schweinsburg et al. 2003; 
Seitz et al. 1999) and cerebellum 
(Bendszus et al. 2001; Durazzo et al. 
2010; Jagannathan et al. 1996; Parks 
et al. 2002; Seitz et al. 1999). Similarly, 
studies in AUD patients shortly  
following detoxification have found 
low levels of Cho (Bendszus et al. 
2001; Durazzo et al. 2004; Ende et  
al. 2005; Fein et al. 1994; Parks et al. 
2002; Seitz et al. 1999), although Cho 
findings in AUD are less consistent 
(e.g., Hermann et al. 2012; Modi  
et al. 2011). Because these findings  
are prominent in white matter, it is 
thought that the effects of alcoholism 
are greater in white than in gray  
matter (De la Monte 1988; Harper  
et al. 2003).

MRS Findings in Recovery  
from Alcoholism
MRS studies suggest that NAA (e.g., 
Bartsch et al. 2007; Bendszus et al. 
2001; Parks et al. 2002), particularly 
in frontal (Bartsch et al. 2007; 
Bendszus et al. 2001; Durazzo et al. 
2006) and cerebellar (Bendszus et al. 
2001; Fein et al. 1994; Parks et al. 
2002) regions and Cho levels (e.g., 
Bartsch et al. 2007; Bendszus et al. 
2001; Durazzo et al. 2006; Ende et  
al. 2005; Martin et al. 1995) show 
normalization (i.e., increase) with 
abstinence. Elevations in mI are not 
seen in long-term sober alcoholics 
(Schweinsburg et al. 2000). These  
findings suggest that low NAA levels 
initially observed in recently sober 

alcoholics reflect neurodegeneration 
without cell death, and increases with 
abstinence may reflect healing without 
cell generation. The disruption and 
recovery of Cho and mI levels suggest 
white-matter recovery with sobriety 
and the potential for remyelination. 

MRS Findings in Animal Models  
of Syndromes Associated With 
Alcoholism
In rat models of WE induced using 
pyrithiamine, the dominant MRS  
pattern is a reduction in both NAA 
and Cho in several brain regions (Lee 
et al. 1995, 2001; Rose et al. 1993), 
including the thalamus (Navarro et al. 
2008, 2005; Pfefferbaum et al. 2007). 
Researchers also frequently report ele-
vations in lactate (Navarro et al. 2005, 
2008). Precipitation of WE with glu-
cose (resulting in seizures) is associated 
with further decreases in NAA and 
Cho and, significantly, an elevation in 
lactate (Zahr et al. 2014a). Treatment 
with thiamine is associated with recov-
ery in Cho levels (Lee et al. 1995).

MRS has been used to evaluate 
models of HE achieved using various 
methods (Cudalbu 2013) and most 
reports show similar findings. Hepatic 
devascularization (Barba et al. 2008; 
Zwingmann et al. 2004), carbon tetra-
chloride treatment (Bates et al. 1989), 
bile-duct ligations (Bosoi et al.  
2014; Rackayova et al. 2015), and 
other means of promoting hyperam-
monemia (e.g., acute liver ischemia, 
urease, or methionine sulfoximine 
treatment) (Bosman et al. 1990; de 
Graaf et al. 1991) result in elevated 
levels of Gln and frequently lactate  
in rat brain (e.g., cortex). Additional 
effects reported include lower levels  
of NAA, mI, Cho, and Glu (Barba et 
al. 2008; Bates et al. 1989; Bosman  
et al. 1990; de Graaf et al. 1991; 
Peeling et al. 1993; Rackayova et al. 
2015; Zwingmann et al. 2004). As in 
the human condition, a similar caveat 
holds: that is, it is not clear if Glu and 
Gln are clearly discriminated in many 
of these studies, and, often, reports 
more likely reflect Glx levels.

Although in vivo MRS studies in 
both humans and animals have persisted 
in interpreting elevations in brain  
Gln as reflecting elevations in periph-
eral ammonia and brain edema 
(Venkatasubramanian et al. 2001),  
ex vivo carbon 13 nuclear MR studies 
have challenged the convention that 
glutamine accumulation is the major 
cause of brain edema in acute HE. 
Such studies instead indicate limited 
metabolic pathway reactions and 
capacity of astrocytes to detoxify 
ammonia by glutamine synthesis  
and emphasize distortions of energy 
and neurotransmitter metabolism 
(Zwingmann 2007). 

MRS Findings in Animal Models  
of Uncomplicated Alcoholism  
(and Recovery)
MRS can be used in animals to detect 
and quantify in vivo and real-time 
brain EtOH kinetics (e.g., rats: Sullivan 
et al. 2005c; monkeys: Kaufman et al. 
1994). Unlike findings in long-term 
sober human alcoholics, nonabstinent 
chronic heavy drinkers (Meyerhoff  
et al. 2004) and social and moderate 
drinkers (Ende et al. 2006) show  
elevated levels of brain Cho. Elevated 
levels of Cho are also reported in the 
thalamus of rodents between weeks  
16 and 40 of alcohol exposure (Lee et 
al. 2003). Neuroimaging research has 
been conducted with rodent models of 
binge (Zahr et al. 2010, 2013, 2014b), 
repeated binge (Zahr et al. 2015), and 
chronic alcohol exposure (Zahr et al. 
2009). In vivo MRS studies have con-
sistently shown that a single 4-day 
binge exposure with BALs approaching 
300 mg/dL is associated with reversible 
changes to the brain: levels of NAA  
are lower and those of Cho are higher 
following binge EtOH exposure (Zahr 
et al. 2010, 2013, 2014b). In the 
repeated-binge experiment, animals 
were exposed to 5 cycles of 4 days of 
intragastric EtOH treatment and 10 
days of recovery. Changes in MRS 
metabolite levels again were transient: 
levels of NAA decreased, whereas  
those of Cho increased with each 
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binge EtOH exposure cycle but then 
recovered during each abstinence 
period. Changes in response to EtOH 
were in expected directions based on 
the previous, single-binge EtOH expo-
sure experiments but did not accrue 
with repeated-binge EtOH exposure 
(Zahr et al. 2015). In the chronic 
EtOH exposure study, NAA levels 
were lower in the EtOH-exposed rela-
tive to the comparison group but did 
not attain statistical significance, whereas 
levels of Cho appeared to demonstrate 
a dose-response curve (i.e., increasing 
levels with higher and longer EtOH 
exposure) (Zahr et al. 2009).

Conclusion

Imaging investigations of alcohol- 
related brain disorders show unique 
neuropathology (as outlined in table 1), 
offering a framework for examining 
pathology in uncomplicated alcoholism. 
Because brains affected by AUD can 
show mild effects in the regions aggres-
sively targeted by overt disease, animal 
models have been useful in distin-
guishing the etiology of pathology  
and differentiating brain regions specifi-
cally targeted by thiamine deficiency  
versus hyperammonemia, for example. 
Individuals with AUD may show more 
prominent effects in some regions 
compared with others, suggesting a 
propensity for one diagnosis over 
another (e.g., an alcoholic may be 
more vulnerable to thiamine deficiency 
than to liver damage). What remains 
unresolved, and what animal models 
can help determine, is why certain 
brain regions are differentially vulnera-
ble to certain pathologies. For example, 
are the colliculi sensitive to thiamine 
deficiency because of their relatively 
high metabolic rate (Landau et al. 
1955; Sokoloff et al. 1977)? Is the pons 
susceptible to CPM because of its 
proximity to the basilar artery? Does 
dopamine explain why basal ganglia 
are targets of liver disease (Mousseau  
et al. 1993)?

In vivo imaging studies in humans 
and animal models will continue to 

provide an evolving picture of the 
course of alcoholic brain disease 
through remissions and exacerbations 
as long-term studies follow human 
alcoholics as they age and as new 
initiatives evaluate adolescents before 
they are exposed to alcohol.
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