Skip to main content
U.S. flag

An official website of the United States government

Search

Prenatal Alcohol Exposure and the Developing Immune System

Most Americans are aware that drinking alcohol during pregnancy can injure the developing fetus. Fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD), with their developmental, cognitive, and behavioral consequences, probably are the best known dangers (Bakoyiannis et al. 2014; Centers for Disease Control and Prevention [CDC] 2009). However, drinking during pregnancy also can...

Translating Alcohol Research Into Practice - Editor's Note

Translational research helps move basic science and clinical laboratory discoveries toward application in health and medicine. Through controlled experiments, basic scientists use animal models to reproduce disease characteristics caused by an agent—in this case, excessively high exposure to alcohol. Through systematic study and observation, clinical research scientists identify symptomatic and...

Prenatal Alcohol Exposure and Cellular Differentiation: A Role for Polycomb and Trithorax Group Proteins in FAS Phenotypes?

Exposure of the developing embryo and fetus to alcohol can have profound adverse effects on physical, behavioral, and cognitive development. The resulting deficits collectively have been termed fetal alcohol spectrum disorders (FASD). They range in severity from mild cognitive deficits to a well-defined syndrome (i.e., fetal alcohol syndrome [FAS]), which is broadly characterized by low birth...

In Utero Alcohol Exposure, Epigenetic Changes, and Their Consequences

Alcohol exposure of the developing embryo and fetus in utero can have a wide range of detrimental effects collectively referred to as fetal alcohol spectrum disorders (FASD). Researchers are intensively investigating the mechanisms that may contribute to alcohol’s effects on the developing organism and to the resulting consequences, particularly with respect to the cognitive and behavioral...

Dysregulation of microRNA Expression and Function Contributes to the Etiology of Fetal Alcohol Spectrum Disorders

MicroRNAs (miRNAs) are members of a vast, evolutionarily ancient, but poorly understood class of regulatory RNA molecules, termed non–protein-coding RNAs (ncRNAs). This means that in contrast to RNA molecules generated during gene expression (i.e., messenger RNA [mRNA] molecules), they are not used as templates for the synthesis of proteins. ncRNAs are encoded within the genomes of both eukaryotic...

Epigenetics—New Frontier for Alcohol Research - Editor's Note

The term “epigenetics” is rapidly becoming one of the more important watchwords in the field of alcohol research. Put simply, epigenetics is the study of changes in gene function that occur without a change in the body’s genetic code, instead relying on epigenetic markers on, among others, the DNA and certain nuclear proteins to turn genes “on” and “off.” Epigenetic changes also are brought about...

Alcohol Metabolism and Epigenetics Changes

The concept that only DNA and proteins can impact disease states is an oversimplification. It does not take into account different metabolic pathways in which key metabolites bind to transcription factors and alter gene expression patterns that contribute to the observable characteristics (the phenotype) of a given disease. Simple metabolites dictate the actions of specific transcription factors...

Epigenetics—Beyond the Genome in Alcoholism

Alcohol is one of the most widely used addictive drugs, and continued use and abuse can lead to the development of tolerance and dependence (Koob 2003a; Tabakoff et al. 1986). Numerous studies have shown that both genetic and environmental risk factors play a role in the development of alcoholism (Ducci and Goldman 2008; Edenberg and Foroud 2006; Farris et al. 2010). Genetic studies in both humans...