Skip to main content
U.S. flag

An official website of the United States government

Search

New Look and New Title for NIAAA’s Flagship Publication

In 2010, NIAAA marked a significant milestone, celebrating 40 years of research on alcohol abuse and alcoholism. Throughout this time, NIAAA’s journal has played an important role, raising awareness about topics in alcohol research and ensuring that important findings from the field were disseminated to the widest possible audience.

The journal began under the title Alcohol World. It had a newsy...

Identifying Genetic Variation for Alcohol Dependence

Over the last decade, three large-scale projects have catalyzed a revolution in genetic technologies and studies. First, the Human Genome Project laid the foundation for modern genetic studies of disease by determining the basic sequence of the 3 billion building blocks (i.e., base pairs) that make up the human genome and by identifying the approximately 25,000 genes included in this sequence (htt...

Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

During the first decade of the new millennium, remarkable advances in technology allowed investigators in all areas of biological research to collect massive amounts of genetic data at an unprecedented rate. The genomics revolution, which began with the sequencing of the human genome, was the basis for efforts such as the 1,000 Genomes Project (http://www.1000genomes.org/) that strive to compile a...

Epigenetics—Beyond the Genome in Alcoholism

Alcohol is one of the most widely used addictive drugs, and continued use and abuse can lead to the development of tolerance and dependence (Koob 2003a; Tabakoff et al. 1986). Numerous studies have shown that both genetic and environmental risk factors play a role in the development of alcoholism (Ducci and Goldman 2008; Edenberg and Foroud 2006; Farris et al. 2010). Genetic studies in both humans...

Identifying Gene Networks Underlying the Neurobiology of Ethanol and Alcoholism

The multiple genetic, environmental, and behavioral factors that play a role in the development of alcohol use disorders (AUDs) make it difficult to identify individual genes linked to these disorders. Nevertheless, some genetic risk factors (i.e., specific variants) associated with AUDs have been identified within many genes, some of which code for proteins involved in known biological pathways...

The Impact of Gene–Environment Interaction on Alcohol Use Disorders

This article explores interactions between genetic and environmental effects on alcohol use disorders (AUDs). Two contrasting ideas define what it means to have genes and environment interact. The first approach—the one that this article will focus on—is a statistical perspective. This approach is based on statistical models in which genetic and environmental factors are sometimes measured...

Bridging Animal and Human Models: Translating From (and to) Animal Genetics

Alcoholism is a complex disorder arising from a combination of genetic and environmental factors. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM–IV) (American Psychiatric Association 1994) requires that three of seven criteria be present during a 12-month period for a diagnosis of alcohol dependence. These criteria are tolerance, withdrawal symptoms, loss of control...

Genes Contributing to the Development of Alcoholism: An Overview

A major goal of genetic research into alcoholism and related traits is to better understand the biology underlying this disease by identifying specific genes in which variations contribute to a person’s risk of developing the disease and then examining the pathways through which these genes and their variants affect the disease. Researchers hope to use this knowledge to develop new, more effective...

Genes Encoding Enzymes Involved in Ethanol Metabolism

The duration and extent of the body’s exposure to beverage alcohol (i.e., ethanol) is the primary determinant of ethanol’s pleiotropic effects on human health (Edenberg 2007). The time course of its concentration and the concentration of its byproducts in the tissues and the circulation, and, consequently, its effects, are determined mainly by the rate of ethanol’s processing (i.e., metabolism) in...